

Bitcoin A Peer-to-Peer Electronic Cash System

Satosh Nakamoto
satosh n@gmx.com

www.b tco n.org

Abstra t. A purely peer-to-peer vers on of electron c cash would allow onl ne
payments to be sent d rectly from one party to another w thout go ng through a
f nanc al nst tut on. D g tal s gnatures prov de part of the solut on, but the ma n
benef ts are lost f a trusted th rd party s st ll requ red to prevent double-spend ng.
We propose a solut on to the double-spend ng problem us ng a peer-to-peer network.
The network t mestamps transact ons by hash ng them nto an ongo ng cha n of
hash-based proof-of-work, form ng a record that cannot be changed w thout redo ng
the proof-of-work. The longest cha n not only serves as proof of the sequence of
events w tnessed, but proof that t came from the largest pool of CPU power. As
long as a major ty of CPU power s controlled by nodes that are not cooperat ng to
attack the network, they'll generate the longest cha n and outpace attackers. The
network tself requ res m n mal structure. Messages are broadcast on a best effort
bas s, and nodes can leave and rejo n the network at w ll, accept ng the longest
proof-of-work cha n as proof of what happened wh le they were gone.

1. Introduction
Commerce on the Internet has come to rely almost exclus vely on f nanc al nst tut ons serv ng as
trusted th rd part es to process electron c payments. Wh le the system works well enough for
most transact ons, t st ll suffers from the nherent weaknesses of the trust based model.
Completely non-revers ble transact ons are not really poss ble, s nce f nanc al nst tut ons cannot
avo d med at ng d sputes. The cost of med at on ncreases transact on costs, l m t ng the
m n mum pract cal transact on s ze and cutt ng off the poss b l ty for small casual transact ons,
and there s a broader cost n the loss of ab l ty to make non-revers ble payments for non-
revers ble serv ces. W th the poss b l ty of reversal, the need for trust spreads. Merchants must
be wary of the r customers, hassl ng them for more nformat on than they would otherw se need.
A certa n percentage of fraud s accepted as unavo dable. These costs and payment uncerta nt es
can be avo ded n person by us ng phys cal currency, but no mechan sm ex sts to make payments
over a commun cat ons channel w thout a trusted party.

What s needed s an electron c payment system based on cryptograph c proof nstead of trust,
allow ng any two w ll ng part es to transact d rectly w th each other w thout the need for a trusted
th rd party. Transact ons that are computat onally mpract cal to reverse would protect sellers
from fraud, and rout ne escrow mechan sms could eas ly be mplemented to protect buyers. In
th s paper, we propose a solut on to the double-spend ng problem us ng a peer-to-peer d str buted
t mestamp server to generate computat onal proof of the chronolog cal order of transact ons. The
system s secure as long as honest nodes collect vely control more CPU power than any
cooperat ng group of attacker nodes.

1

http:www.bitcoin.org
mailto:satoshin@gmx.com

2. Transactions
We def ne an electron c co n as a cha n of d g tal s gnatures. Each owner transfers the co n to the
next by d g tally s gn ng a hash of the prev ous transact on and the publ c key of the next owner
and add ng these to the end of the co n. A payee can ver fy the s gnatures to ver fy the cha n of
ownersh p.

The problem of course s the payee can't ver fy that one of the owners d d not double-spend
the co n. A common solut on s to ntroduce a trusted central author ty, or m nt, that checks every
transact on for double spend ng. After each transact on, the co n must be returned to the m nt to
 ssue a new co n, and only co ns ssued d rectly from the m nt are trusted not to be double-spent.
The problem w th th s solut on s that the fate of the ent re money system depends on the
company runn ng the m nt, w th every transact on hav ng to go through them, just l ke a bank.

We need a way for the payee to know that the prev ous owners d d not s gn any earl er
For our purposes, the earl est transact on s the one that counts, so we don

about later attempts to double-spend. The only way to conf rm the absence of a transact on s to
be aware of all transact ons. In the m nt based model, the m nt was aware of all transact ons and
dec ded wh ch arr ved f rst. To accompl sh th s w thout a trusted party, transact ons must be
publ cly announced [1], and we need a system for part c pants to agree on a s ngle h story of the
order n wh ch they were rece ved. The payee needs proof that at the t me of each transact on, the
major ty of nodes agreed t was the f rst rece ved.

Timestamp Server
The solut on we propose beg ns w th a t mestamp server. A t mestamp server works by tak ng a
hash of a block of tems to be t mestamped and w dely publ sh ng the hash, such as n a
newspaper or Usenet post [2-5]. The t mestamp proves that the data must have ex sted at the
t me, obv ously, n order to get nto the hash. Each t mestamp ncludes the prev ous t mestamp n
 ts hash, form ng a cha n, w th each add t onal t mestamp re nforc ng the ones before t.

Hash Hash

Owner 2's
Priva e Key

Owner 1's
Priva e Key

Sign
Sign

Owner 3's
Priva e Key

Transac ion

Owner 1's
Public Key

Owner 0's
Signa ure

Hash

Transac ion

Owner 2's
Public Key

Owner 1's
Signa ure

Hash

Verify

Transac ion

Owner 3's
Public Key

Owner 2's
Signa ure

Hash

Verify

transact ons. 't care

3.

Block Block

I em I em ... I em I em ...

2

4. Proof-of-Work
To mplement a d str buted t mestamp server on a peer-to-peer bas s, we w ll need to use a proof-
of-work system s m lar to Adam Back's Hashcash [6], rather than newspaper or Usenet posts.
The proof-of-work nvolves scann ng for a value that when hashed, such as w th SHA-256, the
hash beg ns w th a number of zero b ts. The average work requ red s exponent al n the number
of zero b ts requ red and can be ver f ed by execut ng a s ngle hash.

For our t mestamp network, we mplement the proof-of-work by ncrement ng a nonce n the
block unt l a value s found that g ves the block's hash the requ red zero b ts. Once the CPU
effort has been expended to make t sat sfy the proof-of-work, the block cannot be changed
w thout redo ng the work. As later blocks are cha ned after t, the work to change the block
would nclude redo ng all the blocks after t.

Block

Prev Hash Nonce

Tx Tx ...

Block

Prev Hash Nonce

Tx Tx ...

The proof-of-work also solves the problem of determ n ng representat on n major ty dec s on
mak ng. If the major ty were based on one-IP-address-one-vote, t could be subverted by anyone
able to allocate many IPs. Proof-of-work s essent ally one-CPU-one-vote. The major ty
dec s on s represented by the longest cha n, wh ch has the greatest proof-of-work effort nvested
 n t. If a major ty of CPU power s controlled by honest nodes, the honest cha n w ll grow the
fastest and outpace any compet ng cha ns. To mod fy a past block, an attacker would have to
redo the proof-of-work of the block and all blocks after t and then catch up w th and surpass the
work of the honest nodes. We w ll show later that the probab l ty of a slower attacker catch ng up
d m n shes exponent ally as subsequent blocks are added.

To compensate for ncreas ng hardware speed and vary ng nterest n runn ng nodes over t me,
the proof-of-work d ff culty s determ ned by a mov ng average target ng an average number of
blocks per hour. If they're generated too fast, the d ff culty ncreases.

5. Network
The steps to run the network are as follows:

1) New transact ons are broadcast to all nodes.
2) Each node collects new transact ons nto a block.
3) Each node works on f nd ng a d ff cult proof-of-work for ts block.
4) When a node f nds a proof-of-work, t broadcasts the block to all nodes.
5) Nodes accept the block only f all transact ons n t are val d and not already spent.
6) Nodes express the r acceptance of the block by work ng on creat ng the next block n the

cha n, us ng the hash of the accepted block as the prev ous hash.

Nodes always cons der the longest cha n to be the correct one and w ll keep work ng on
extend ng t. If two nodes broadcast d fferent vers ons of the next block s multaneously, some
nodes may rece ve one or the other f rst. In that case, they work on the f rst one they rece ved,
but save the other branch n case t becomes longer. The t e w ll be broken when the next proof-
of-work s found and one branch becomes longer; the nodes that were work ng on the other
branch w ll then sw tch to the longer one.

3

New transact on broadcasts do not necessar ly need to reach all nodes. As long as they reach
many nodes, they w ll get nto a block before long. Block broadcasts are also tolerant of dropped
messages. If a node does not rece ve a block, t w ll request t when t rece ves the next block and
real zes t m ssed one.

6. Incentive
By convent on, the f rst transact on n a block s a spec al transact on that starts a new co n owned
by the creator of the block. Th s adds an ncent ve for nodes to support the network, and prov des
a way to n t ally d str bute co ns nto c rculat on, s nce there s no central author ty to ssue them.
The steady add t on of a constant of amount of new co ns s analogous to gold m ners expend ng
resources to add gold to c rculat on. In our case, t s CPU t me and electr c ty that s expended.

The ncent ve can also be funded w th transact on fees. If the output value of a transact on s
less than ts nput value, the d fference s a transact on fee that s added to the ncent ve value of
the block conta n ng the transact on. Once a predeterm ned number of co ns have entered
c rculat on, the ncent ve can trans t on ent rely to transact on fees and be completely nflat on
free.

The ncent ve may help encourage nodes to stay honest. If a greedy attacker s able to
assemble more CPU power than all the honest nodes, he would have to choose between us ng t
to defraud people by steal ng back h s payments, or us ng t to generate new co ns. He ought to
f nd t more prof table to play by the rules, such rules that favour h m w th more new co ns than
everyone else comb ned, than to underm ne the system and the val d ty of h s own wealth.

7. Reclaiming Disk Space
Once the latest transact on n a co n s bur ed under enough blocks, the spent transact ons before
 t can be d scarded to save d sk space. To fac l tate th s w thout break ng the block's hash,
transact ons are hashed n a Merkle Tree [7][2][5], w th only the root ncluded n the block's hash.
Old blocks can then be compacted by stubb ng off branches of the tree. The nter or hashes do
not need to be stored.

Block Block
Block Header (Block Hash)

Prev Hash Nonce

Hash01

Hash0 Hash1 Hash2 Hash3

Hash23

Roo Hash

Hash01

Hash2

Tx3

Hash23

Block Header (Block Hash)

Roo Hash

Prev Hash Nonce

Hash3

Tx0 Tx1 Tx2 Tx3

Transac ions Hashed in a Merkle Tree Af er Pruning Tx0-2 from he Block

A block header w th no transact ons would be about 80 bytes. If we suppose blocks are
generated every 10 m nutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. W th computer systems
typ cally sell ng w th 2GB of RAM as of 2008, and Moore's Law pred ct ng current growth of
1.2GB per year, storage should not be a problem even f the block headers must be kept n
memory.

4

8. Simplified Payment Verification
It s poss ble to ver fy payments w thout runn ng a full network node. A user only needs to keep
a copy of the block headers of the longest proof-of-work cha n, wh ch he can get by query ng
network nodes unt l he's conv nced he has the longest cha n, and obta n the Merkle branch
l nk ng the transact on to the block t's t mestamped n. He can't check the transact on for
h mself, but by l nk ng t to a place n the cha n, he can see that a network node has accepted t,
and blocks added after t further conf rm the network has accepted t.

Longes Proof-of-Work Chain

Hash01

Hash2 Hash3

Hash23

Block Header

Merkle Roo

Prev Hash Nonce

Block Header

Merkle Roo

Prev Hash Nonce

Block Header

Merkle Roo

Prev Hash Nonce

Merkle Branch for Tx3

Tx3

As such, the ver f cat on s rel able as long as honest nodes control the network, but s more
vulnerable f the network s overpowered by an attacker. Wh le network nodes can ver fy
transact ons for themselves, the s mpl f ed method can be fooled by an attacker's fabr cated
transact ons for as long as the attacker can cont nue to overpower the network. One strategy to
protect aga nst th s would be to accept alerts from network nodes when they detect an nval d
block, prompt ng the user's software to download the full block and alerted transact ons to
conf rm the ncons stency. Bus nesses that rece ve frequent payments w ll probably st ll want to
run the r own nodes for more ndependent secur ty and qu cker ver f cat on.

9. Combining and Splitting Value
Although t would be poss ble to handle co ns nd v dually, t would be unw eldy to make a
separate transact on for every cent n a transfer. To allow value to be spl t and comb ned,
transact ons conta n mult ple nputs and outputs. Normally there w ll be e ther a s ngle nput
from a larger prev ous transact on or mult ple nputs comb n ng smaller amounts, and at most two
outputs: one for the payment, and one return ng the change, f any, back to the sender.

Transac ion

In

...

In Ou

...

It should be noted that fan-out, where a transact on depends on several transact ons, and those
transact ons depend on many more, s not a problem here. There s never the need to extract a
complete standalone copy of a transact on's h story.

5

10. Privacy
The trad t onal bank ng model ach eves a level of pr vacy by l m t ng access to nformat on to the
part es nvolved and the trusted th rd party. The necess ty to announce all transact ons publ cly
precludes th s method, but pr vacy can st ll be ma nta ned by break ng the flow of nformat on n
another place: by keep ng publ c keys anonymous. The publ c can see that someone s send ng
an amount to someone else, but w thout nformat on l nk ng the transact on to anyone. Th s s
s m lar to the level of nformat on released by stock exchanges, where the t me and s ze of
 nd v dual trades, the "tape", s made publ c, but w thout tell ng who the part es were.

Tradi ional Privacy Model

Iden i ies Transac ions Trus ed
Third Par y Coun erpar y Public

New Privacy Model

Transac ions Iden i ies Public

As an add t onal f rewall, a new key pa r should be used for each transact on to keep them
from be ng l nked to a common owner. Some l nk ng s st ll unavo dable w th mult - nput
transact ons, wh ch necessar ly reveal that the r nputs were owned by the same owner. The r sk
 s that f the owner of a key s revealed, l nk ng could reveal other transact ons that belonged to
the same owner.

11. Calculations
We cons der the scenar o of an attacker try ng to generate an alternate cha n faster than the honest
cha n. Even f th s s accompl shed, t does not throw the system open to arb trary changes, such
as creat ng value out of th n a r or tak ng money that never belonged to the attacker. Nodes are
not go ng to accept an nval d transact on as payment, and honest nodes w ll never accept a block
conta n ng them. An attacker can only try to change one of h s own transact ons to take back
money he recently spent.

The race between the honest cha n and an attacker cha n can be character zed as a B nom al
Random Walk. The success event s the honest cha n be ng extended by one block, ncreas ng ts
lead by +1, and the fa lure event s the attacker's cha n be ng extended by one block, reduc ng the
gap by -1.

The probab l ty of an attacker catch ng up from a g ven def c t s analogous to a Gambler's
Ru n problem. Suppose a gambler w th unl m ted cred t starts at a def c t and plays potent ally an
 nf n te number of tr als to try to reach breakeven. We can calculate the probab l ty he ever
reaches breakeven, or that an attacker ever catches up w th the honest cha n, as follows [8]:

p = probab l ty an honest node f nds the next block
q = probab l ty the attacker f nds the next block
qz = probab l ty the attacker w ll ever catch up from z blocks beh nd

1 if p≤qq z ={q / pz if p q}

6

G ven our assumpt on that p q, the probab l ty drops exponent ally as the number of blocks the
attacker has to catch up w th ncreases. W th the odds aga nst h m, f he doesn't make a lucky
lunge forward early on, h s chances become van sh ngly small as he falls further beh nd.

We now cons der how long the rec p ent of a new transact on needs to wa t before be ng
suff c ently certa n the sender can't change the transact on. We assume the sender s an attacker
who wants to make the rec p ent bel eve he pa d h m for a wh le, then sw tch t to pay back to
h mself after some t me has passed. The rece ver w ll be alerted when that happens, but the
sender hopes t w ll be too late.

The rece ver generates a new key pa r and g ves the publ c key to the sender shortly before
s gn ng. Th s prevents the sender from prepar ng a cha n of blocks ahead of t me by work ng on
 t cont nuously unt l he s lucky enough to get far enough ahead, then execut ng the transact on at
that moment. Once the transact on s sent, the d shonest sender starts work ng n secret on a
parallel cha n conta n ng an alternate vers on of h s transact on.

The rec p ent wa ts unt l the transact on has been added to a block and z blocks have been
l nked after t. He doesn't know the exact amount of progress the attacker has made, but
assum ng the honest blocks took the average expected t me per block, the attacker's potent al
progress w ll be a Po sson d str but on w th expected value:

q=z
p

To get the probab l ty the attacker could st ll catch up now, we mult ply the Po sson dens ty for
each amount of progress he could have made by the probab l ty he could catch up from that po nt:

∞ k − e ⋅{q / p z−k  if k≤ z∑ }
k=0 k ! 1 if k z

Rearrang ng to avo d summ ng the nf n te ta l of the d str but on...

z k − e1−∑ 1−q / p z− k 
k=0 k !

Convert ng to C code...

#inclu e <math.h>
 ouble AttackerSuccessProbability(ouble q, int z)
{

 ouble p = 1.0 - q;
 ouble lamb a = z * (q / p);
 ouble sum = 1.0;
int i, k;
for (k = 0; k <= z; k++)
{

 ouble poisson = exp(-lamb a);
for (i = 1; i <= k; i++)

poisson *= lamb a / i;
sum -= poisson * (1 - pow(q / p, z - k));

}
return sum;

}

7

Runn ng some results, we can see the probab l ty drop off exponent ally w th z.

q=0.1
z=0 P=1.0000000
z=1 P=0.2045873
z=2 P=0.0509779
z=3 P=0.0131722
z=4 P=0.0034552
z=5 P=0.0009137
z=6 P=0.0002428
z=7 P=0.0000647
z=8 P=0.0000173
z=9 P=0.0000046
z=10 P=0.0000012

q=0.3
z=0 P=1.0000000
z=5 P=0.1773523
z=10 P=0.0416605
z=15 P=0.0101008
z=20 P=0.0024804
z=25 P=0.0006132
z=30 P=0.0001522
z=35 P=0.0000379
z=40 P=0.0000095
z=45 P=0.0000024
z=50 P=0.0000006

Solv ng for P less than 0.1%...

P < 0.001
q=0.10 z=5
q=0.15 z=8
q=0.20 z=11
q=0.25 z=15
q=0.30 z=24
q=0.35 z=41
q=0.40 z=89
q=0.45 z=340

12. Conclusion
We have proposed a system for electron c transact ons w thout rely ng on trust. We started w th
the usual framework of co ns made from d g tal s gnatures, wh ch prov des strong control of
ownersh p, but s ncomplete w thout a way to prevent double-spend ng. To solve th s, we
proposed a peer-to-peer network us ng proof-of-work to record a publ c h story of transact ons
that qu ckly becomes computat onally mpract cal for an attacker to change f honest nodes
control a major ty of CPU power. The network s robust n ts unstructured s mpl c ty. Nodes
work all at once w th l ttle coord nat on. They do not need to be dent f ed, s nce messages are
not routed to any part cular place and only need to be del vered on a best effort bas s. Nodes can
leave and rejo n the network at w ll, accept ng the proof-of-work cha n as proof of what
happened wh le they were gone. They vote w th the r CPU power, express ng the r acceptance of
val d blocks by work ng on extend ng them and reject ng nval d blocks by refus ng to work on
them. Any needed rules and ncent ves can be enforced w th th s consensus mechan sm.

8

References
[1] W. Da , "b-money," http://www.we da .com/bmoney.txt, 1998.

[2] H. Mass as, X.S. Av la, and J.-J. Qu squater, "Des gn of a secure t mestamp ng serv ce w th m n mal
trust requ rements," In 20th Symposium on Information Theory in the Benelux, May 1999.

[3] S. Haber, W.S. Stornetta, "How to t me-stamp a d g tal document," In Journal of Cryptology, vol 3, no
2, pages 99-111, 1991.

[4] D. Bayer, S. Haber, W.S. Stornetta, "Improv ng the eff c ency and rel ab l ty of d g tal t me-stamp ng,"
In Sequences II: Methods in Communication, Security and Computer Science, pages 329-334, 1993.

[5] S. Haber, W.S. Stornetta, "Secure names for b t-str ngs," In Proceedings of the 4th ACM Conference
on Computer and Communications Security, pages 28-35, Apr l 1997.

[6] A. Back, "Hashcash - a den al of serv ce counter-measure,"
http://www.hashcash.org/papers/hashcash.pdf, 2002.

[7] R.C. Merkle, "Protocols for publ c key cryptosystems," In Proc. 1980 Symposium on Security and
Privacy, IEEE Computer Soc ety, pages 122-133, Apr l 1980.

[8] W. Feller, "An ntroduct on to probab l ty theory and ts appl cat ons," 1957.

9

http://www.hashcash.org/papers/hashcash.pdf
http://www.weidai.com/bmoney.txt

