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Abstra t. A purely peer-to-peer vers on of electron c cash would allow onl ne 
payments to be sent d rectly from one party to another w thout go ng through a 
f nanc al  nst tut on. D g tal s gnatures prov de part of the solut on, but the ma n 
benef ts are lost  f a trusted th rd party  s st ll requ red to prevent double-spend ng. 
We propose a solut on to the double-spend ng problem us ng a peer-to-peer network. 
The network t mestamps transact ons by hash ng them  nto an ongo ng cha n of 
hash-based proof-of-work, form ng a record that cannot be changed w thout redo ng 
the proof-of-work. The longest cha n not only serves as proof of the sequence of 
events w tnessed, but proof that  t came from the largest pool of CPU power. As 
long as a major ty of CPU power  s controlled by nodes that are not cooperat ng to 
attack the network, they'll generate the longest cha n and outpace attackers. The 
network  tself requ res m n mal structure. Messages are broadcast on a best effort 
bas s, and nodes can leave and rejo n the network at w ll, accept ng the longest 
proof-of-work cha n as proof of what happened wh le they were gone. 

1. Introduction 
Commerce on the Internet has come to rely almost exclus vely on f nanc al  nst tut ons serv ng as 
trusted th rd part es to process electron c payments. Wh le the system works well enough for 
most transact ons,  t st ll suffers from the  nherent weaknesses of the trust based model. 
Completely non-revers ble transact ons are not really poss ble, s nce f nanc al  nst tut ons cannot 
avo d med at ng d sputes. The cost of med at on  ncreases transact on costs, l m t ng the 
m n mum pract cal transact on s ze and cutt ng off the poss b l ty for small casual transact ons, 
and there  s a broader cost  n the loss of ab l ty to make non-revers ble payments for non-
revers ble serv ces. W th the poss b l ty of reversal, the need for trust spreads. Merchants must 
be wary of the r customers, hassl ng them for more  nformat on than they would otherw se need. 
A certa n percentage of fraud  s accepted as unavo dable. These costs and payment uncerta nt es 
can be avo ded  n person by us ng phys cal currency, but no mechan sm ex sts to make payments 
over a commun cat ons channel w thout a trusted party. 

What  s needed  s an electron c payment system based on cryptograph c proof  nstead of trust, 
allow ng any two w ll ng part es to transact d rectly w th each other w thout the need for a trusted 
th rd party. Transact ons that are computat onally  mpract cal to reverse would protect sellers 
from fraud, and rout ne escrow mechan sms could eas ly be  mplemented to protect buyers. In 
th s paper, we propose a solut on to the double-spend ng problem us ng a peer-to-peer d str buted 
t mestamp server to generate computat onal proof of the chronolog cal order of transact ons. The 
system  s secure as long as honest nodes collect vely control more CPU power than any 
cooperat ng group of attacker nodes. 
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2. Transactions 
We def ne an electron c co n as a cha n of d g tal s gnatures. Each owner transfers the co n to the 
next by d g tally s gn ng a hash of the prev ous transact on and the publ c key of the next owner 
and add ng these to the end of the co n. A payee can ver fy the s gnatures to ver fy the cha n of 
ownersh p. 

The problem of course  s the payee can't ver fy that one of the owners d d not double-spend 
the co n. A common solut on  s to  ntroduce a trusted central author ty, or m nt, that checks every 
transact on for double spend ng. After each transact on, the co n must be returned to the m nt to 
 ssue a new co n, and only co ns  ssued d rectly from the m nt are trusted not to be double-spent. 
The problem w th th s solut on  s that the fate of the ent re money system depends on the 
company runn ng the m nt, w th every transact on hav ng to go through them, just l ke a bank. 

We need a way for the payee to know that the prev ous owners d d not s gn any earl er 
For our purposes, the earl est transact on  s the one that counts, so we don

about later attempts to double-spend. The only way to conf rm the absence of a transact on  s to 
be aware of all transact ons. In the m nt based model, the m nt was aware of all transact ons and 
dec ded wh ch arr ved f rst. To accompl sh th s w thout a trusted party, transact ons must be 
publ cly announced [1], and we need a system for part c pants to agree on a s ngle h story of the 
order  n wh ch they were rece ved. The payee needs proof that at the t me of each transact on, the 
major ty of nodes agreed  t was the f rst rece ved. 

Timestamp Server 
The solut on we propose beg ns w th a t mestamp server. A t mestamp server works by tak ng a 
hash of a block of  tems to be t mestamped and w dely publ sh ng the hash, such as  n a 
newspaper or Usenet post [2-5]. The t mestamp proves that the data must have ex sted at the 
t me, obv ously,  n order to get  nto the hash. Each t mestamp  ncludes the prev ous t mestamp  n 
 ts hash, form ng a cha n, w th each add t onal t mestamp re nforc ng the ones before  t. 

Hash Hash 

Owner 2's 
Priva e Key 

Owner 1's 
Priva e Key 

Sign
Sign 

Owner 3's 
Priva e Key 

Transac ion 

Owner 1's 
Public Key 

Owner 0's 
Signa ure 

Hash 

Transac ion 

Owner 2's 
Public Key 

Owner 1's 
Signa ure 

Hash 

Verify 

Transac ion 

Owner 3's 
Public Key 

Owner 2's 
Signa ure 

Hash 

Verify 

transact ons. 't care 
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Block Block 

I em I em ... I em I em ... 
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4. Proof-of-Work 
To  mplement a d str buted t mestamp server on a peer-to-peer bas s, we w ll need to use a proof-
of-work system s m lar to Adam Back's Hashcash [6], rather than newspaper or Usenet posts. 
The proof-of-work  nvolves scann ng for a value that when hashed, such as w th SHA-256, the 
hash beg ns w th a number of zero b ts. The average work requ red  s exponent al  n the number 
of zero b ts requ red and can be ver f ed by execut ng a s ngle hash. 

For our t mestamp network, we  mplement the proof-of-work by  ncrement ng a nonce  n the 
block unt l a value  s found that g ves the block's hash the requ red zero b ts. Once the CPU 
effort has been expended to make  t sat sfy the proof-of-work, the block cannot be changed 
w thout redo ng the work. As later blocks are cha ned after  t, the work to change the block 
would  nclude redo ng all the blocks after  t. 

Block 

Prev Hash Nonce 

Tx Tx ... 

Block 

Prev Hash Nonce 

Tx Tx ... 

The proof-of-work also solves the problem of determ n ng representat on  n major ty dec s on 
mak ng. If the major ty were based on one-IP-address-one-vote,  t could be subverted by anyone 
able to allocate many IPs. Proof-of-work  s essent ally one-CPU-one-vote. The major ty 
dec s on  s represented by the longest cha n, wh ch has the greatest proof-of-work effort  nvested 
 n  t. If a major ty of CPU power  s controlled by honest nodes, the honest cha n w ll grow the 
fastest and outpace any compet ng cha ns. To mod fy a past block, an attacker would have to 
redo the proof-of-work of the block and all blocks after  t and then catch up w th and surpass the 
work of the honest nodes. We w ll show later that the probab l ty of a slower attacker catch ng up 
d m n shes exponent ally as subsequent blocks are added. 

To compensate for  ncreas ng hardware speed and vary ng  nterest  n runn ng nodes over t me, 
the proof-of-work d ff culty  s determ ned by a mov ng average target ng an average number of 
blocks per hour. If they're generated too fast, the d ff culty  ncreases. 

5. Network 
The steps to run the network are as follows: 

1) New transact ons are broadcast to all nodes. 
2) Each node collects new transact ons  nto a block. 
3) Each node works on f nd ng a d ff cult proof-of-work for  ts block. 
4) When a node f nds a proof-of-work,  t broadcasts the block to all nodes. 
5) Nodes accept the block only  f all transact ons  n  t are val d and not already spent. 
6) Nodes express the r acceptance of the block by work ng on creat ng the next block  n the 

cha n, us ng the hash of the accepted block as the prev ous hash. 

Nodes always cons der the longest cha n to be the correct one and w ll keep work ng on 
extend ng  t. If two nodes broadcast d fferent vers ons of the next block s multaneously, some 
nodes may rece ve one or the other f rst. In that case, they work on the f rst one they rece ved, 
but save the other branch  n case  t becomes longer. The t e w ll be broken when the next proof-
of-work  s found and one branch becomes longer; the nodes that were work ng on the other 
branch w ll then sw tch to the longer one. 
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New transact on broadcasts do not necessar ly need to reach all nodes. As long as they reach 
many nodes, they w ll get  nto a block before long. Block broadcasts are also tolerant of dropped 
messages. If a node does not rece ve a block,  t w ll request  t when  t rece ves the next block and 
real zes  t m ssed one. 

6. Incentive 
By convent on, the f rst transact on  n a block  s a spec al transact on that starts a new co n owned 
by the creator of the block. Th s adds an  ncent ve for nodes to support the network, and prov des 
a way to  n t ally d str bute co ns  nto c rculat on, s nce there  s no central author ty to  ssue them. 
The steady add t on of a constant of amount of new co ns  s analogous to gold m ners expend ng 
resources to add gold to c rculat on. In our case,  t  s CPU t me and electr c ty that  s expended. 

The  ncent ve can also be funded w th transact on fees. If the output value of a transact on  s 
less than  ts  nput value, the d fference  s a transact on fee that  s added to the  ncent ve value of 
the block conta n ng the transact on. Once a predeterm ned number of co ns have entered 
c rculat on, the  ncent ve can trans t on ent rely to transact on fees and be completely  nflat on 
free. 

The  ncent ve may help encourage nodes to stay honest. If a greedy attacker  s able to 
assemble more CPU power than all the honest nodes, he would have to choose between us ng  t 
to defraud people by steal ng back h s payments, or us ng  t to generate new co ns. He ought to 
f nd  t more prof table to play by the rules, such rules that favour h m w th more new co ns than 
everyone else comb ned, than to underm ne the system and the val d ty of h s own wealth. 

7. Reclaiming Disk Space 
Once the latest transact on  n a co n  s bur ed under enough blocks, the spent transact ons before 
 t can be d scarded to save d sk space. To fac l tate th s w thout break ng the block's hash, 
transact ons are hashed  n a Merkle Tree [7][2][5], w th only the root  ncluded  n the block's hash. 
Old blocks can then be compacted by stubb ng off branches of the tree. The  nter or hashes do 
not need to be stored. 

Block Block 
Block Header (Block Hash) 

Prev Hash Nonce 

Hash01 

Hash0 Hash1 Hash2 Hash3 

Hash23 

Roo  Hash 

Hash01 

Hash2 

Tx3 

Hash23 

Block Header (Block Hash) 

Roo  Hash 

Prev Hash Nonce 

Hash3 

Tx0 Tx1 Tx2 Tx3 

Transac ions Hashed in a Merkle Tree Af er Pruning Tx0-2 from  he Block 

A block header w th no transact ons would be about 80 bytes. If we suppose blocks are 
generated every 10 m nutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. W th computer systems 
typ cally sell ng w th 2GB of RAM as of 2008, and Moore's Law pred ct ng current growth of 
1.2GB per year, storage should not be a problem even  f the block headers must be kept  n 
memory. 
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8. Simplified Payment Verification 
It  s poss ble to ver fy payments w thout runn ng a full network node. A user only needs to keep 
a copy of the block headers of the longest proof-of-work cha n, wh ch he can get by query ng 
network nodes unt l he's conv nced he has the longest cha n, and obta n the Merkle branch 
l nk ng the transact on to the block  t's t mestamped  n. He can't check the transact on for 
h mself, but by l nk ng  t to a place  n the cha n, he can see that a network node has accepted  t, 
and blocks added after  t further conf rm the network has accepted  t. 

Longes  Proof-of-Work Chain 

Hash01 

Hash2 Hash3 

Hash23 

Block Header 

Merkle Roo  

Prev Hash Nonce 

Block Header 

Merkle Roo  

Prev Hash Nonce 

Block Header 

Merkle Roo  

Prev Hash Nonce 

Merkle Branch for Tx3 

Tx3 

As such, the ver f cat on  s rel able as long as honest nodes control the network, but  s more 
vulnerable  f the network  s overpowered by an attacker. Wh le network nodes can ver fy 
transact ons for themselves, the s mpl f ed method can be fooled by an attacker's fabr cated 
transact ons for as long as the attacker can cont nue to overpower the network. One strategy to 
protect aga nst th s would be to accept alerts from network nodes when they detect an  nval d 
block, prompt ng the user's software to download the full block and alerted transact ons to 
conf rm the  ncons stency. Bus nesses that rece ve frequent payments w ll probably st ll want to 
run the r own nodes for more  ndependent secur ty and qu cker ver f cat on. 

9. Combining and Splitting Value 
Although  t would be poss ble to handle co ns  nd v dually,  t would be unw eldy to make a 
separate transact on for every cent  n a transfer. To allow value to be spl t and comb ned, 
transact ons conta n mult ple  nputs and outputs. Normally there w ll be e ther a s ngle  nput 
from a larger prev ous transact on or mult ple  nputs comb n ng smaller amounts, and at most two 
outputs: one for the payment, and one return ng the change,  f any, back to the sender. 

Transac ion 

In 

... 

In Ou  

... 

It should be noted that fan-out, where a transact on depends on several transact ons, and those 
transact ons depend on many more,  s not a problem here. There  s never the need to extract a 
complete standalone copy of a transact on's h story. 
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10. Privacy 
The trad t onal bank ng model ach eves a level of pr vacy by l m t ng access to  nformat on to the 
part es  nvolved and the trusted th rd party. The necess ty to announce all transact ons publ cly 
precludes th s method, but pr vacy can st ll be ma nta ned by break ng the flow of  nformat on  n 
another place: by keep ng publ c keys anonymous. The publ c can see that someone  s send ng 
an amount to someone else, but w thout  nformat on l nk ng the transact on to anyone. Th s  s 
s m lar to the level of  nformat on released by stock exchanges, where the t me and s ze of 
 nd v dual trades, the "tape",  s made publ c, but w thout tell ng who the part es were. 

Tradi ional Privacy Model 

Iden i ies Transac ions Trus ed 
Third Par y Coun erpar y Public 

New Privacy Model 

Transac ions Iden i ies Public 

As an add t onal f rewall, a new key pa r should be used for each transact on to keep them 
from be ng l nked to a common owner. Some l nk ng  s st ll unavo dable w th mult - nput 
transact ons, wh ch necessar ly reveal that the r  nputs were owned by the same owner. The r sk 
 s that  f the owner of a key  s revealed, l nk ng could reveal other transact ons that belonged to 
the same owner. 

11. Calculations 
We cons der the scenar o of an attacker try ng to generate an alternate cha n faster than the honest 
cha n. Even  f th s  s accompl shed,  t does not throw the system open to arb trary changes, such 
as creat ng value out of th n a r or tak ng money that never belonged to the attacker. Nodes are 
not go ng to accept an  nval d transact on as payment, and honest nodes w ll never accept a block 
conta n ng them. An attacker can only try to change one of h s own transact ons to take back 
money he recently spent. 

The race between the honest cha n and an attacker cha n can be character zed as a B nom al 
Random Walk. The success event  s the honest cha n be ng extended by one block,  ncreas ng  ts 
lead by +1, and the fa lure event  s the attacker's cha n be ng extended by one block, reduc ng the 
gap by -1. 

The probab l ty of an attacker catch ng up from a g ven def c t  s analogous to a Gambler's 
Ru n problem. Suppose a gambler w th unl m ted cred t starts at a def c t and plays potent ally an 
 nf n te number of tr als to try to reach breakeven. We can calculate the probab l ty he ever 
reaches breakeven, or that an attacker ever catches up w th the honest cha n, as follows [8]: 

p = probab l ty an honest node f nds the next block 
q = probab l ty the attacker f nds the next block 
qz = probab l ty the attacker w ll ever catch up from z blocks beh nd 

1 if p≤qq z ={q / pz if p q} 
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G ven our assumpt on that p  q, the probab l ty drops exponent ally as the number of blocks the 
attacker has to catch up w th  ncreases. W th the odds aga nst h m,  f he doesn't make a lucky 
lunge forward early on, h s chances become van sh ngly small as he falls further beh nd. 

We now cons der how long the rec p ent of a new transact on needs to wa t before be ng 
suff c ently certa n the sender can't change the transact on. We assume the sender  s an attacker 
who wants to make the rec p ent bel eve he pa d h m for a wh le, then sw tch  t to pay back to 
h mself after some t me has passed. The rece ver w ll be alerted when that happens, but the 
sender hopes  t w ll be too late. 

The rece ver generates a new key pa r and g ves the publ c key to the sender shortly before 
s gn ng. Th s prevents the sender from prepar ng a cha n of blocks ahead of t me by work ng on 
 t cont nuously unt l he  s lucky enough to get far enough ahead, then execut ng the transact on at 
that moment. Once the transact on  s sent, the d shonest sender starts work ng  n secret on a 
parallel cha n conta n ng an alternate vers on of h s transact on. 

The rec p ent wa ts unt l the transact on has been added to a block and z blocks have been 
l nked after  t. He doesn't know the exact amount of progress the attacker has made, but 
assum ng the honest blocks took the average expected t me per block, the attacker's potent al 
progress w ll be a Po sson d str but on w th expected value: 

q=z 
p 

To get the probab l ty the attacker could st ll catch up now, we mult ply the Po sson dens ty for 
each amount of progress he could have made by the probab l ty he could catch up from that po nt: 

∞ k − e ⋅{q / p z−k  if k≤ z∑ }
k=0 k ! 1 if k  z

Rearrang ng to avo d summ ng the  nf n te ta l of the d str but on... 

z k − e1−∑ 1−q / p z− k  
k=0 k ! 

Convert ng to C code... 

#inclu e <math.h> 
 ouble AttackerSuccessProbability( ouble q, int z)
{

  ouble p = 1.0 - q;
 ouble lamb a = z * (q / p);
 ouble sum = 1.0;
int i, k;
for (k = 0; k <= z; k++)
{

  ouble poisson = exp(-lamb a);
for (i = 1; i <= k; i++)

poisson *= lamb a / i;
sum -= poisson * (1 - pow(q / p, z - k));

}
return sum;

} 
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Runn ng some results, we can see the probab l ty drop off exponent ally w th z. 

q=0.1
z=0 P=1.0000000 
z=1 P=0.2045873 
z=2 P=0.0509779 
z=3 P=0.0131722 
z=4 P=0.0034552 
z=5 P=0.0009137 
z=6 P=0.0002428 
z=7 P=0.0000647 
z=8 P=0.0000173 
z=9 P=0.0000046 
z=10 P=0.0000012 

q=0.3
z=0 P=1.0000000 
z=5 P=0.1773523 
z=10 P=0.0416605 
z=15 P=0.0101008 
z=20 P=0.0024804 
z=25 P=0.0006132 
z=30 P=0.0001522 
z=35 P=0.0000379 
z=40 P=0.0000095 
z=45 P=0.0000024 
z=50 P=0.0000006 

Solv ng for P less than 0.1%... 

P < 0.001 
q=0.10 z=5 
q=0.15 z=8 
q=0.20 z=11 
q=0.25 z=15 
q=0.30 z=24 
q=0.35 z=41 
q=0.40 z=89 
q=0.45 z=340 

12. Conclusion 
We have proposed a system for electron c transact ons w thout rely ng on trust. We started w th 
the usual framework of co ns made from d g tal s gnatures, wh ch prov des strong control of 
ownersh p, but  s  ncomplete w thout a way to prevent double-spend ng. To solve th s, we 
proposed a peer-to-peer network us ng proof-of-work to record a publ c h story of transact ons 
that qu ckly becomes computat onally  mpract cal for an attacker to change  f honest nodes 
control a major ty of CPU power. The network  s robust  n  ts unstructured s mpl c ty. Nodes 
work all at once w th l ttle coord nat on. They do not need to be  dent f ed, s nce messages are 
not routed to any part cular place and only need to be del vered on a best effort bas s. Nodes can 
leave and rejo n the network at w ll, accept ng the proof-of-work cha n as proof of what 
happened wh le they were gone. They vote w th the r CPU power, express ng the r acceptance of 
val d blocks by work ng on extend ng them and reject ng  nval d blocks by refus ng to work on 
them. Any needed rules and  ncent ves can be enforced w th th s consensus mechan sm. 
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