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Abstract

Blockchain consensus algorithms that use automatic

trailing checkpoints (finalization) and additional proof-

of-work requirements (parking) in their consensus

algorithms are susceptible to persistent forks. The

probability of attacker success is analyzed and

compared to other algorithms. While autofinalization

is shown to be a tradeoff that makes doublespend

reorganization attacks harder at the expense of

allowing persistent forks, parking makes creating

persistent forks much easier, and only reduces the

likelihood of reorganization of pre-finalized blocks.

Introduction

The consensus achieved by the parking and auto-

finalization technologies in Bitcoin Cash prevents

intentional chain reorganization. But they are

inconsistent with consensus theory and that strongly

implies that these technologies are not innovations in

consensus but rather trade correctness for

convenience. This paper provides an analysis that

describes specific attacks against auto-finalization

and parking and shows the cost and likelihood that a

malicious miner could successfully execute them.

Definitions

Persistent fork in this paper means a failure of the

consensus algorithm to achieve consensus, requiring

an extra-algorithmic correction. In practice, this would

mean a fork of the blockchain that first requires

human consensus to pick one of the two forks, and

then human intervention at every node that followed

the wrong fork to manually force a blockchain

reorganization.

Finalization is a technique to create non-persistent

blockchain checkpoints. All forks that do not contain

the finalized block are marked invalid persistently. Full

nodes can be directed to consider one particular

block, F, “final”. F is stored in RAM and any blocks

that are not on F’s chain are marked as invalid. This is

not quite a checkpoint for two reasons:

If the full node is restarted, F is

forgotten.

Only one block is considered final at a

time.

These differences are noted here for precision but

may simply be an implementation convenience.

Auto-finalization is a process where the main chain

block that is at the auto-finalization depth (which is

10 on BCH) is marked as the “final” block.

Parking is a modification to the rule that determines

the main chain proposed by Satoshi
1
 “Nodes always

consider the longest chain to be the correct one and

will keep working on extending it.” The parking

technique observes that a full node that is not in

“initial block download” mode has a fork that it

currently sees as the main chain (M), and a candidate

fork ( C ) that it is considering switching to. A full node

that implements parking will not switch to C unless it

exceeds the work in M by an amount that varies

depending on the length of the fork M, called extra

parking work (EPW): 

If we make the simplifying “steady state mining”

assumption that each block requires approximately

the same amount of work w, then this equation

simplifies to: 

Background

The auto-finalization and parking logic was added to

the Bitcoin ABC client in response to the Bitcoin

Cash/Bitcoin SV fork. At that time, there was fear that

a short-term economically irrational actor would

f orkBlock = LastC ommonBlock(M, C ) (1)

mainF orkLength = Height(M) − Height(f orkBlock)) (2)

EPW =   

⎩⎪⎪
⎨
⎪⎪
⎧   if  mainF orkLength is 1

2
Work(M )−Work(forkBlock)

  if  mainF orkLength is 2 or 32
Work(M −1)−Work(forkBlock)

Work(M) − Work(f orkBlock) otherwise
(3)

EPW =   

⎩⎪⎪
⎨
⎪⎪
⎧   if  mainF orkLength is 1 or 2

2
w

w if  mainF orkLength is 3
w ∗ mainF orkLength otherwise (4)
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continually reorganize the Bitcoin Cash fork with

empty blocks (or execute other attacks). Doing so

would block all transactions from confirming on-chain,

encouraging abandonment of the fork. By finalizing

blocks 10 deep, no deeper reorganization can occur.

But it was observed that this is not good enough since

an attacker could simply release its reorganizations

every 8 or 9 blocks, although it does prevent double

spend attacks (since exchanges would not release

funds until finalization occurred). Parking was

proposed to discourage this activity, since an attacker

would have to produce twice as much work to cause a

reorganization, except for the first 3 blocks. One

might expect that an attacker simply reorganize every

2 or 3 blocks, since the parking algorithm requires

much less extra work for forks of those lengths.

However even with majority hash power, there is a

probability that the attacker will fail to create the

longest chain, and this probability increases as the

depth decreases. So the honest minority would be

able to get blocks confirmed and given BCH’s

utilization these few blocks could confirm all existing

transactions. For example, if the honest miners have

only 20% of the hash power, they will win a 3 block

race 5.2% of the time but a 9 block race only 0.1% of

the time
1
.

No such attack materialized.

Persistent Forking Attacks

Against Auto-finalization

The well known double spend attack has been used to

steal millions of dollars
7,8

. It actually comprises two

components: the actual double spend transaction,

and a blockchain reorganization that occurs because a

privately generated fork is released. A persistent fork

can be used in place of the release of the privately

generated fork in a double spend attack because

eventually people need to “heal” the fork by choosing

one of the chains as the “main” chain and manually

reorganize the nodes on the other chain. Although

there is some uncertainty as to which chain people

would choose, an attacker could run double spends on

both forks to different services, or in other ways make

one chain more palatable than the other. For example,

they could organize things so choosing the “fraud”

chain awards all mining fees to the attacker, or

confirm no other transactions, providing the general

public an opportunity to run double spends against

old, rewound transactions.

But a simpler attack might be to short the

cryptocurrency on multiple exchanges and trigger

persistent forks since the disruption is likely to cause

significant loss of confidence.

For completeness Eclipse/Partition Attacks and node

synchronization failures are mentioned next. However

the main attack presented in this paper is the “fork

matching” attack, described in section 3.

Eclipse/Partition Attack

An eclipse or partition attack is an attack in which the

target node or nodes cannot communicate outside of

the eclipsed group, except via the attacker.

If an attacker can maintain an eclipse or partition for

the auto-finalization depth number of blocks, the

isolated nodes will persistently fork from the other

nodes.

Auto-finalization therefore imports the networking

architecture and its source code into the forking

attack surface of the cryptocurrency, whereas it was

previously only a problem for double spend attacks.

Node Synchronization Failure

The effect of chain parking is that nodes do not

immediately switch to the most-work chain. Instead

they stick with the “current” chain. This “current”

chain is the most-work chain in the set that the node’s

connections are advertising. If this fork length is

greater than the auto-finalization depth (10 blocks on

BCH), it will be “finalized” and so persistently prevent

switching.

There are two avenues of attack. In the first, the

attacker creates a deep reorganization most-work

chain. None of the existing nodes will switch to it due

to their finalization rules. However, all new nodes in

the system will synchronize to it (if visible during

synchronization) and all SPV wallets will choose it.

This would be an expensive attack to maintain, but

would force BCH developers to hard code a

checkpoint into every full node and SPV wallet to

rejects the attacker’s chain.

In the second attack, the attacker creates a lower-

work fork 1 block longer than the auto-finalization

depth anywhere (or in multiple places to gain multiple

attempts) in the chain. It then attempts to push this

fork into synchronizing nodes, causing finalization into

this “dead-end”. If the synchronizing node is also

successfully eclipse attacked, the attack will succeed

since the node will not be aware of any greater work

chain. Otherwise the success of the attack will fail

given a careful implementation of synchronization

that first validates the POW in most-work chain’s full

header path, and second rejects any attempts to

inject blocks into the node that are not on this path.

These problems were demonstrated during the

BCHABC fork on Dec 1, 2020
F3

. [This section

document was updated on Dec 2 to include this

evidence]

Fork Matching Attack

This attack can still cause a persistent fork in a

connected network – that is, no eclipse or partition



attack is necessary. In summary, the attacker will

cause a fork and maintain it for the auto-finalization

depth number of blocks, whereupon the first forked

blocks are finalized in every node, resulting in a

persistent fork.

Let us first examine the attack against nodes that

implement finalization but not parking.

Preparation

To prepare for this attack, the attacker positions

computing resources near full nodes associated with

the services the attacker would like to fork. These full

nodes can be identified reliably by techniques

discovered in [3]. The attacker must be able to

reliably be the node that provides the target full node

new blocks. This is easy to verify before the attack

begins, by determining whether the target node is

requesting blocks from (issuing INV blocks to) an

attack node. An attacker may also be able to employ

protocol shortcuts (such as forwarding a block without

header or INV, or forwarding the header and then the

block without waiting for a GETDATA) to further

increase its block propagation rate relative to other

nodes, depending on the details of a node’s protocol

implementation.

Note that if the attacker’s objective is general

mayhem rather than forking specific target nodes and

services, the attack is easier since it can be targeted

towards N nodes but still succeed if some nontrivial

number of nodes are forked.

Trigger

In the first step the attacker triggers a fork F off of

main chain M. This is accomplished by mining a block 

 and then waiting for another miner to mine a block 

. As soon as the attacker receives notification of the

block , it forwards  instead, using any available

protocol shortcuts. Based on the analysis done during

setup,  will beat  to the target nodes.

Repeat

The attacker now attempts to mine a number of

blocks equal to the blockchain’s auto-finalization

depth  to . As main chain blocks are discovered by

the rest of the network, the attacker propagates its

blocks directly to its targets. This ensures that the

target nodes see the attackers block first, but that (in

general) the rest of the network does not.

A node does not switch from its current chain to an

equal work chain, so as long as block propagation is

controlled, the fork can be maintained.

There is a risk that the target nodes will propagate the

fork to untargeted nodes, converting those nodes

from M to F. There is also a risk that some of the

target nodes will see the main chain block first,

converting them from F to M. These risks may be

acceptable depending on the attacker’s goals.

Once the fork has been maintained for the auto-

finalization depth, the fork will become persistent and

the attack can stop.

Problems

P1 “Attack Foiled”: The attacker must have

produced as many or more blocks than the main chain

miners every time the main chain miners produce a

block, so that it can push the next block on F the

moment a block on M is discovered. Analysis of the

exact success probability of this is included below.

P2 “Attack Mistimed”: If the attacker presents 

too early or late, it can cause nodes to move between

forks F and M. Proper timing is experimentally easy to

achieve on regtest. However, the only way to

determine whether this applies to the mainnet is to

try it. It turns out that it does not matter for “parking”

nodes so the analysis of this problem stops here.

P3 “Attack Spoiled”: If the targeted nodes are

miners, and they discover and propagate a block on F,

the nodes mining M will switch to F, ending the attack.

Note that since F is now the main chain, F has lost no

money. Actually, this constitutes a selfish mining

attack
4
 so F’s actions will increase its profitability on

subsequent blocks by reducing difficulty. To put some

numbers around this problem, the likelihood that a

miner with hash power ‘p’ as a fraction of the total

hash power does not produce a block in N nodes can

be calculated. It is 1 minus likelihood that the rest of

the hash power “wins” n times, or: 

For example, targeting 5% of the hash power will be

spoiled 40% of the time with an auto-finalization

depth of 10. However, note that in cryptocurrencies

like BCH, which command a small fraction of available

hash power, it would not be difficult for a miner to

direct a significant quantity of hash to both M and F
F2

,

dramatically reducing the targeted hash power’s

percentage.

P4 “ASERT interference”: Since ASERT recalculates

difficulty for every block, is it near impossible to have

the exact same POW on two forks? If so the fork will

heal. Or will the “absolutely scheduled” nature of

ASERT generally result in the same difficulty? It turns

out that it does not matter for “parking” full nodes so

the analysis of this problem stops here.

“Attack Foiled” Analysis

This attack differs from the traditional doublespend

because the attacker must remain ahead of the main

F  0

M  0

M  0 F  0

F  0 M  0

F  1 F  f

F  n

spoil probability = 1 − (1 − p)n (5)



chain throughout the entire attack interval of auto-

finalization depth (AFD) blocks.

Let:

T => mining interval in minutes/block, with 100%

hash power (e.g. 10 minutes) 

q => the attacker’s proportion of hash power 

p = 1-q => honest miner’s proportion of hash power

So the honest miner’s mining interval

(minutes/blocks) 

 

And the attacking miner’s mining interval

(minutes/blocks) 

How much time to extend the mainchain by z blocks,

on average? 

How many blocks will attacker produce during honest

miner’s time to mine z blocks?

Answering this question gives us the Poisson interval

(lambda) of the attacker, expressed in the time

expected for the honest nodes to produce a z block. It

is the attacker’s block rate (inverse of 2) * the time

available (3) or:

Let us propose the attacker is tied at the AFD-1th

block and must produce the AFDth block first. The

probability is the sum of the probabilities that the

attacker will produce any of 1 to infinity blocks in the

time it takes the honest miners to produce z=1

blocks. Modelling mining as a Poisson process results

in: 

Now let us propose that the attacker is tied at the

AFD-2nd block and must win. This is the probability

that the attacker produces 2 or more blocks (directly

wins), or that the attacker produces 1 block times the

probability of a win from that new position.

In general, if N blocks remain in the race, the

probability of a win is the sum of the probability of

producing 1,2,…N-1 blocks in one interval times the

probability of winning from that new position, plus the

probability that N or more blocks are discovered in

this interval (which would be an automatic win):

The following equation is not quite correct, because it

does not model the “head start” that the F chain

gains if it mines more than 1 block within an M chain

discovery interval. But it is presented here as a

stepping stone. 

To fully express the model, we need to introduce

variables denoting the main and fork lengths (Mlen

and Flen):

This can be calculated and plotted for a variety of

auto-finalization depths and attacker hash, resulting

in the following graph (see Appendix 1 for jupyter

code):

 

figure 1

Visually, this system is fairly robust against minority

hash attackers at BCH’s 10 auto-finalization depth.

Quantitatively, the likelihood of a successful attack by

a 50% miner is only 25%. However, the situation

changes rapidly above about 60% hash, with an

attacker with 2/3rds of the hash power resulting in a

82% chance of success and a 3/4ths miner having an

94% likelihood of forcing a persistent fork.

These majority hash attacks are very relevant to a

minority hash coin like BCH since a relatively small

BTC miner can easily produce this hash power and

direct it temporarily onto BCH. With an auto-

finalization depth of 10, an attacker would have to

redirect this hash power for about an hour to create a

persistent fork.

Price

Let us assume that hash power is readily available to

be diverted to the attack. This is generally true for

any “minor” blockchain – that is any chain that shares

its proof-of-work algorithm with another chain that

consumes the majority of the available hash power,

and is true for BCH which is the only chain that the

author is aware of that uses auto-finalization and fork

parking. Without this assumption there is an

unquantifiable cost to fabricate, deploy and manage

the additional hash power required to execute this

attack.

Hmi = T /p (1)

Ami = T /q (2)

= z ∗ Hmi = z ∗ T /p (3)

lambdaAttacker = q/T ∗ z ∗ T /p = zq/p (4)

1 − P(X = k successes = 0, λ = zq/p) =  =
k!

λ ek −λ
1 − e =−zq/p 1 − e−q/p (5)

W(N ) = (  P(X =
i=1

∑
N −1

i successes, q/p)W(N − i)) +  P(X =
i=N

∑
∞

i successes, q/p)

W(N , Mlen, F len) =

  

⎩⎪⎪
⎨
⎪⎪
⎧ 0 if  F len < Mlen,

1 if  F len >= N ,  otherwise

(  P(X = i, q/p)W(N − i, Mlen + 1, F len + i)) +  P(X = i, q/p)
i=1
∑

N −1−Flen

i=N −Flen
∑
∞



In BCH, the cost to mount the attack is the cost of

production of 10 blocks. At the time of this writing, if

we assume miners are breaking even, this would be

approximately  or  USD. This author

feels that this is a very small amount compared to the

profits that might be gained by leveraged short

positions in BCH and executing one or multiple fork

attacks. Additionally, forcing a persistent fork on a

minority of services then abandoning it, can be used

to double spend as described earlier.

It is unclear how BCH would “heal” a persistent fork. If

the attacker’s chain is chosen as the main chain,

there would be no loss to the attacker, except as

caused by BCH price declines and the miner’s forced

holding of the mined 62.5 BCH for 100 blocks. If the

attacker’s chain is not chosen, all blocks are

orphaned, so the cost is $14000 USD.

A P1 failure results in the loss of between 1 and 9

orphan blocks or between $1000 and $14000 USD.

A P2/P4 failure may result in the loss of between

$1000 and $14000 USD, or no loss if the attacker’s

fork is chosen as the main chain.

A P3 failure results in no loss of money.

A majority hash attack is much more likely to fail early

than it is to fail later (especially with parking), since

the more blocks mined, the more the majority chain

tends to pull ahead of the minority. This means that

failed attacks are more likely to incur losses on the

lower end of the specified ranges.

Persistent Forking Attacks

Against Parking Auto-

finalization Nodes

We can now consider how fork “parking” affects the

main attack described in this paper; the “fork

matching” attack. Recall that “parking” causes nodes

to resist switching forks unless the other fork’s work

exceeds the current one by a variable amount as

described earlier.

Attack is Possible with Lower

Hash or Succeeds With Greater

Probability

Note that “parking” significantly relaxes the finish

criteria. If our attacker is working on the last block of

F (at the auto-finalization depth - 1), M must be over

2*(auto-finalization depth - 1) blocks ahead to trigger

F nodes to move back to M. This relationship is true

for prior blocks as well, to fork depth 2. Ignoring the

first 2 blocks, the F chain can grow half as fast as the

M chain and still succeed.

P2: “Attack Mistiming”, Relaxed

A fork depth of 1 is not relevant, since that is the

initial fork block. Parking does not affect the depth 2

block since the excess work is half a block. However,

once the fork depth is 3 or greater, parking requires at

least one block of extra work. This means that an

arrival order problem will be ignored.

If the next M block is presented first to F-following

nodes, it will not cause a chain switch. If the next F

block is presented first to M-following nodes, there will

similarly be no switch!

Parking therefore significantly reduces the likelihood

of timing problems.

P4: “ASERT Interference”,

Solved

Similarly to the way attack mistiming becomes more

lenient due to chain parking, minor variations in the

chain work due to ASERT retargeting difficulty in every

block will be ignored.

P1: “Attack Foiled”, Foiled

A significant problem is that the F chain must to stay

even with or be ahead of the M chain every time a M

block is found. This is a significantly more strict

requirement than, for example, that the F chain

eventually be even with the M chain (as is needed for

the classic double spend attack). Parking relaxes this

requirement to some degree. By block 3, the F chain

can fall 1 block behind. And by block M > 3 the F

chain can fall M blocks behind without triggering a

chain switch. The probability analysis was rerun with

the BCH parking rules, yielding the following graph

 

figure 2

Parking allows significantly less applied hash power to

result in greater attack success probability, especially

at lower hash levels. To repeat the data points

presented earlier, 50% hash now has a 48% success

rate (double), 66% an 83% success rate and 75% has

a 94% success rate (about the same).

10 ∗ 6.25 ∗ 250 15000



Attack Probability

Comparison

The follow graph plots the success probability for the

traditional double spend and the fork matching

attacks with and without 10 block finalization and

BCH-algorithm parking. For double spend attacks, an

embargo period of 10 blocks was chosen because it

makes sense that exchanges would take advantage of

the 10 block finalization.

Green is the standard double spend attack with a 10

block embargo period on a chain without finalization

or parking. As first described in [1], since the attacker

can theoretically mine forever, any attacker with >

50% of the hash power is guaranteed to succeed.

Blue is a “double spend attack”
[f1]

 on a chain with

finalization. Because of the finalization, the attack

must succeed before the 10th main chain block is

mined. This means that even if the attacker has

majority hash power, it may get unlucky and be out-

mined by the main chain. This is why the top of the

curve smoothly approaches 1 as opposed to the

Green line.

Yellow is a double spend attack on a chain with

finalization and parking. As expected, it is significantly

harder to succeed if the attacker must provide twice

as much work as the main chain!

Red is a 10 block Fork Matching attack against a chain

with finalization and parking. Interestingly, it has the

highest success probability for minority hash

attackers with about 20% to 35% of the hash. This is

likely because parking’s extra required difficulty

significantly helps the attack.

Orange is a 10 block Fork Matching attack against a

chain with finalization only. As expected, it is harder

for minority hash attackers than the red.

 

figure 3

Conclusion

Since a fork matching attack is effectively a persistent

double spend attack, this last graph is concerning. In

an attempt to eliminate double spend reorganizations,

the ability to create persistent double spends was

introduced. This is arguably worse, it will certainly be

a lot harder to “clean up the mess” if such an attack

is executed – likely requiring some centralized

decision making.

More abstractly, the existence of theoretical results

such as [5] and [6] that prove consensus impossible

under certain constraints were deftly avoided by

Satoshi because Bitcoin actually never achieves

consensus. Instead it achieves a probability of

consensus that increases as the statement’s depth in

the chain increases. And in practice it eventually

becomes economically infeasible for the statement to

be changed.

The “consensus” achieved by Bitcoin Cash’s parking

and auto-finalization technologies discourages

intentional chain reorganization and completely

prevents it beyond 10 blocks. But it is inconsistent

with consensus theory and that strongly implies that

these technologies are not innovations in consensus

but rather a tradeoff. This tradeoff was neither

identified or analyzed by the authors of these

technologies, as far as I am aware. This paper

furnishes that analysis and shows how these

technologies can fail to achieve consensus and open

avenues to execute the attacks they were intending

to fix.

Instead of intentional chain reorganization, attackers

can create intentional chain “deorganization”,

achieving much the same outcome in terms of double

spends or general mayhem. The question we may

now want to ask is whether the risk of persistent

consensus failure is worth the price of traditional

double spend reorganization resistance?

Footnotes

[F1] The name “double spend attack” does not make

much sense in this context since exchanges would

use an embargo period greater than the finalization.

So it would not be possible to execute an actual

double spend (because the exchange would not

release the goods before the reorganization). But this

attack can reorganize the blockchain for other

purposes, such as DoS.

[F2] Note that mining both the main chain and fork

would also allow the attacker to deliver both M and F

blocks directly to targets simultaneously, reducing the

chance of propagation problems. It could also delay

blocks it discovers on M.

[F3] Leading up to December 1, 2020, the BCHABC

blockchain had been suffering a DOS attack from an

anonymous miner that would mine mostly empty

blocks and orphan blocks that did not pay 100% of

the coinbase to ABC. In concert with ABC (as



evidenced by explorer.bitcoinabc.org) a miner created

a significant lower-work fork off of a 5 block chain that

was created on Nov 30 (height 662687), but

orphaned. On Dec 1, the BCHABC blockchain

therefore had 2 significant consensus-compatible

forks, which we can call BCHAA (most work) and

BCHAB (less work). It is presumed that the ABC

release’s networking code “preferred” BCHAB by

initially connecting to BCHAB following nodes. During

this time, network connectivity was inconsistent

because connections to BCH would also consume

connection slots. During 3 attempts to synchronize by

2 independent users, 2 nodes followed BCHAB and 1

followed BCHAA.

The following log shows how parking and finalization

caused the lesser-work chain to be followed even

though the node became aware of the greater-work

chain (** indicates annotations):

2020-12-01T22:38:48Z UpdateTip: new 

best=00000000000000003cdfa4fb383f133cc2259

6eea61cb2bb4a2501cf20238f09 height=662686 

version=0x20000000 log2_work=88.40692 

tx=295435142 date='2020-11-30T18:30:46Z' 

progress=0.998904 

cache=401.1MiB(2327112txo) 

2020-12-01T22:38:48Z UpdateTip: new 

best=0000000000000000311ffccd67cba247a6db0

a67fa2576174334fce036c48f84 height=662687 

version=0x20000000 log2_work=88.40692 

tx=295435154 date='2020-11-30T18:32:42Z' 

progress=0.998905 

cache=401.1MiB(2327125txo) 

2020-12-01T22:38:48Z UpdateTip: new 

best=000000000000000012b04da060e505a2c5917

a8e9f2b329744880085a26ceda7 height=662688 

version=0x20002000 log2_work=88.40692 

tx=295435163 date='2020-11-30T18:36:57Z' 

progress=0.998908 

cache=401.1MiB(2327136txo) 

2020-12-01T22:38:48Z UpdateTip: new 

best=000000000000000024eaa803e4afb9db982dc

2ad654a4d9576b838efb9740262 height=662689 

version=0x20000000 log2_work=88.40692 

tx=295435234 date='2020-11-30T18:42:34Z' 

progress=0.998912 

cache=401.2MiB(2327346txo) 

2020-12-01T22:38:48Z UpdateTip: new 

best=0000000000000000421f887e044db3791f520

f8e8ef95fdb55c7116a8b843d89 height=662690 

version=0x20000000 log2_work=88.406921 

tx=295435237 date='2020-11-30T18:43:48Z' 

progress=0.998913 

cache=401.2MiB(2327352txo) 

2020-12-01T22:38:48Z UpdateTip: new 

best=00000000000000000b11d5c6599bb1ad4fa97

3355e508a7f25aef1b75aaefa7d height=662691 

version=0x20c00000 log2_work=88.406921 

tx=295435259 date='2020-11-30T18:51:16Z' 

progress=0.998917 

cache=401.2MiB(2327382txo) 

2020-12-01T22:38:48Z Pre-allocating up to 

position 0x700000 in rev01132.dat 

2020-12-01T22:38:49Z UpdateTip: new 

best=0000000000000000212132b87c5d88d857964

40bf7d74c5e50d770d87838784e height=662692 

version=0x20000000 log2_work=88.406921 

tx=295439836 date='2020-12-01T09:58:18Z' 

progress=0.999506 

cache=401.3MiB(2328268txo) 

2020-12-01T22:38:49Z Leaving 

InitialBlockDownload (latching to false) 

2020-12-01T22:38:49Z UpdateTip: new 

best=00000000000000001f52576f7ebd17935a059

1d8166ccc29b4776b3783f663bb height=662693 

version=0x20800000 log2_work=88.406921 

tx=295444566 date='2020-12-01T10:27:51Z' 

progress=0.999525 

cache=401.3MiB(2328281txo) 

2020-12-01T22:38:49Z UpdateTip: new 

best=00000000000000003574991e117505e6e35fa

539d5923a29beff6531edb0f9c3 height=662694 

version=0x2000e000 log2_work=88.406921 

tx=295449299 date='2020-12-01T14:48:52Z' 

progress=0.999695 

cache=401.3MiB(2328425txo) 

2020-12-01T22:38:49Z UpdateTip: new 

best=00000000000000004ecde44b1f16bcd729bc7

f3ae78e3448f44615c1729bdbf8 height=662695 

version=0x20000000 log2_work=88.406921 

tx=295454026 date='2020-12-01T15:05:26Z' 

progress=0.999705 

cache=401.3MiB(2328441txo) 

2020-12-01T22:38:49Z UpdateTip: new 

best=0000000000000000572b776c430b6228cb7cc

8f5bee4df0132fa2ddd6a3bd025 height=662696 

version=0x20000000 log2_work=88.406922 

tx=295458755 date='2020-12-01T15:28:58Z' 

progress=0.999721 

cache=401.3MiB(2328450txo) 

2020-12-01T22:38:49Z UpdateTip: new 

best=000000000000000036f7e43405e0ce74bbca5

86eec7b45cb03201514b70ea61a height=662697 

version=0x20c00000 log2_work=88.406922 

tx=295463484 date='2020-12-01T15:45:29Z' 

progress=0.999731 

cache=401.3MiB(2328461txo) 

2020-12-01T22:38:49Z UpdateTip: new 

best=00000000000000002028199ed3fc89ce05be4

64b8aa3454c7977b06cece3d663 height=662698 

version=0x20400000 log2_work=88.406922 

tx=295468217 date='2020-12-01T16:12:57Z' 

progress=0.999749 

cache=401.3MiB(2328478txo) 

2020-12-01T22:38:49Z Pre-allocating up to 

position 0x800000 in rev01132.dat 

2020-12-01T22:38:49Z UpdateTip: new 

best=000000000000000057dab39787431f06f01db

7aacb33f22ac56775b160ae3848 height=662699 

version=0x20000000 log2_work=88.406922 

tx=295472946 date='2020-12-01T16:20:20Z' 

progress=0.999754 

cache=401.3MiB(2328485txo) 

2020-12-01T22:38:50Z UpdateTip: new 

best=000000000000000034d6eb357da13820d8cdb

bd6a1b4b8044aee93ba9b293c77 height=662700 

version=0x20000000 log2_work=88.406922 

tx=295477674 date='2020-12-01T16:30:24Z' 

progress=0.999761 

cache=401.3MiB(2328491txo) 

2020-12-01T22:38:50Z UpdateTip: new 

best=00000000000000001d0653aa36ed906093b40

http://explorer.bitcoinabc.org/


39a4cc432757cab9127491f6f33 height=662701 

version=0x20000000 log2_work=88.406922 

tx=295482401 date='2020-12-01T16:31:13Z' 

progress=0.999761 

cache=401.3MiB(2328495txo) 

2020-12-01T22:38:50Z UpdateTip: new 

best=000000000000000035e71a8234c5a9384a83b

3ac8f111393ec07ee5cd8d9d88c height=662702 

version=0x20800000 log2_work=88.406923 

tx=295487127 date='2020-12-01T16:40:42Z' 

progress=0.999767 

cache=401.3MiB(2328497txo) 

2020-12-01T22:38:50Z UpdateTip: new 

best=00000000000000003c75f89e752bc18c62bcc

89823680276f216217c40343693 height=662703 

version=0x20c00000 log2_work=88.406923 

tx=295491859 date='2020-12-01T16:52:06Z' 

progress=0.999775 

cache=401.3MiB(2328507txo) 

2020-12-01T22:38:50Z UpdateTip: new 

best=000000000000000030d7c51fd01e65fcb64d5

ecfb8a17dd115f2a8c4c1991499 height=662704 

version=0x20000000 log2_work=88.406923 

tx=295496591 date='2020-12-01T17:14:29Z' 

progress=0.999789 

cache=401.3MiB(2328517txo) 

2020-12-01T22:38:50Z UpdateTip: new 

best=00000000000000004fc834b1150d2b690b505

30d59d80a61c9909e54934d56a5 height=662705 

version=0x20000000 log2_work=88.406923 

tx=295501317 date='2020-12-01T17:23:12Z' 

progress=0.999795 

cache=401.3MiB(2328524txo) 

2020-12-01T22:38:51Z UpdateTip: new 

best=000000000000000055e97a5a605a05ad729f3

66f4c8c036737b2cc17cd09f82f height=662706 

version=0x3fff0000 log2_work=88.406923 

tx=295506047 date='2020-12-01T17:35:34Z' 

progress=0.999803 

cache=401.3MiB(2328542txo) 

 

** this 662,687 in the largest POW fork 

chain ** 

2020-12-01T22:38:51Z Park block 

00000000000000000709b858a6a0c8610e604e7707

2ef4407763afb0780ce712 as it would cause a 

deep reorg. 

2020-12-01T22:38:51Z UpdateTip: new 

best=000000000000000006736ee57bcd3a2e45a42

30d5923cb69e5e1e855a82508c9 height=662707 

version=0x20000000 log2_work=88.406923 

tx=295510774 date='2020-12-01T17:38:35Z' 

progress=0.999805 

cache=401.3MiB(2328546txo) 

2020-12-01T22:38:51Z UpdateTip: new 

best=0000000000000000229363232760bc77d9879

c37d57646df5f6a3e2f35a987f2 height=662708 

version=0x20000000 log2_work=88.406924 

tx=295515500 date='2020-12-01T17:40:28Z' 

progress=0.999806 

cache=401.3MiB(2328548txo) 

2020-12-01T22:38:51Z Park block 

00000000000000002cf08a4a14920aa0930b46c4e9

092533adf570e7250db2b0 as it would cause a 

deep reorg. 

2020-12-01T22:38:51Z UpdateTip: new 

best=00000000000000001322fddd281205d82fdfe

459a992af6ab4cf87dad3d69338 height=662709 

version=0x20400000 log2_work=88.406924 

tx=295520223 date='2020-12-01T17:45:40Z' 

progress=0.999810 

cache=401.3MiB(2328570txo) 

2020-12-01T22:38:51Z UpdateTip: new 

best=000000000000000046b8dc899d847732f6548

b6692ae28c6a94aeb4dffdb3a56 height=662710 

version=0x20000000 log2_work=88.406924 

tx=295524950 date='2020-12-01T17:53:49Z' 

progress=0.999815 

cache=401.3MiB(2328573txo) 

2020-12-01T22:38:51Z Park block 

00000000000000004262b9f56c93d72a6f8e221f08

c252e035aab5331f671f0a as it would cause a 

deep reorg. 

2020-12-01T22:38:51Z UpdateTip: new 

best=00000000000000003ea89a75da1da76380626

4ca42d39f6e96f0dbf6cae8792f height=662711 

version=0x20000000 log2_work=88.406924 

tx=295529677 date='2020-12-01T17:56:02Z' 

progress=0.999816 

cache=401.3MiB(2328578txo) 

2020-12-01T22:38:51Z UpdateTip: new 

best=0000000000000000429e448460c0ee6800db0

012f856d8082a639900617abc39 height=662712 

version=0x20800000 log2_work=88.406924 

tx=295534412 date='2020-12-01T18:30:21Z' 

progress=0.999839 

cache=401.3MiB(2328614txo) 

2020-12-01T22:38:51Z Park block 

00000000000000003abc448d72e69babb9a13659aa

14df995b13e76ff5b97612 as it would cause a 

deep reorg. 

2020-12-01T22:38:52Z UpdateTip: new 

best=000000000000000047d42e0dc3b3431ef874c

7ed68379762f77815fd8ecbac37 height=662713 

version=0x20000000 log2_work=88.406924 

tx=295539139 date='2020-12-01T18:32:35Z' 

progress=0.999840 

cache=401.3MiB(2328616txo) 

2020-12-01T22:38:52Z Pre-allocating up to 

position 0x900000 in rev01132.dat 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000000bcaf061b6acae7f2ba51

26dbfbcee57fc47bc231c0ef679 height=662714 

version=0x20000000 log2_work=88.406925 

tx=295543865 date='2020-12-01T18:33:00Z' 

progress=0.999840 

cache=401.3MiB(2328618txo) 

2020-12-01T22:38:52Z Park block 

00000000000000003fcb4ad579e937c831d6f39610

bcc6714bed13de8392c7b4 as it would cause a 

deep reorg. 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000000261419163b30ef838547

39da348b96d59156b788d1916fc height=662715 

version=0x27d4e000 log2_work=88.406925 

tx=295548595 date='2020-12-01T18:48:32Z' 

progress=0.999850 

cache=401.3MiB(2328628txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=000000000000000024b1b59b7d065b6e1a651

d57b979ce6a7d0953045b5ca809 height=662716 

version=0x20000000 log2_work=88.406925 

tx=295552433 date='2020-12-01T19:15:29Z' 

progress=0.999868 



cache=401.8MiB(2332504txo) 

2020-12-01T22:38:52Z Park block 

00000000000000003bdaacb7ec7f86049f2b4e0dc2

4031c8980daacb06bfdc8f as it would cause a 

deep reorg. 

2020-12-01T22:38:52Z UpdateTip: new 

best=000000000000000037733987b917fa31d6a29

d98f7b7c0552dd29edab05b0657 height=662717 

version=0x20000000 log2_work=88.406925 

tx=295552481 date='2020-12-01T19:36:34Z' 

progress=0.999882 

cache=401.8MiB(2332521txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=000000000000000038fd2290e132e39256744

8355b66981d053e9331823edb5a height=662718 

version=0x20800000 log2_work=88.406925 

tx=295552486 date='2020-12-01T19:37:30Z' 

progress=0.999882 

cache=401.8MiB(2332728txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000000fd22489326d22fa4bef1

c29714cc24d9fc24e58b0d1370d height=662719 

version=0x20000000 log2_work=88.406925 

tx=295552520 date='2020-12-01T19:50:41Z' 

progress=0.999891 

cache=401.8MiB(2332764txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000003f82accf9bba20407036a

480a62bd12cf6dcfed717fb333d height=662720 

version=0x20c00000 log2_work=88.406926 

tx=295552527 date='2020-12-01T19:54:10Z' 

progress=0.999893 

cache=401.8MiB(2332767txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000001c2a71c0f432f3cc4a0f7

b98378bfc46d0ca176533e2b6df height=662721 

version=0x20000000 log2_work=88.406926 

tx=295552544 date='2020-12-01T19:56:45Z' 

progress=0.999895 

cache=401.8MiB(2332781txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=000000000000000030587c87406ab2d87c665

c33bb0787436d7ea3fa310107ba height=662722 

version=0x20000000 log2_work=88.406926 

tx=295552547 date='2020-12-01T19:57:18Z' 

progress=0.999895 

cache=401.8MiB(2332783txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000002e3e2f4ec86fd2c78ec15

8d1c3f80f01d581f34c2b8bc7f4 height=662723 

version=0x20000000 log2_work=88.406926 

tx=295552567 date='2020-12-01T20:04:22Z' 

progress=0.999900 

cache=401.8MiB(2332790txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000004c402051bb2c7e3b707a3

2a9ef46caf6b64880d61dd68e31 height=662724 

version=0x20a00000 log2_work=88.406926 

tx=295552582 date='2020-12-01T20:11:29Z' 

progress=0.999904 

cache=401.8MiB(2332863txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=000000000000000038f822ea0ff410dd46cbb

34a15718b30d4fc64c447532dfa height=662725 

version=0x20000000 log2_work=88.406926 

tx=295552584 date='2020-12-01T20:11:47Z' 

progress=0.999904 

cache=401.8MiB(2332865txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=0000000000000000373e32c0e86c53cf67e52

c87dd44ca163fe87e4a536a736d height=662726 

version=0x21f9e000 log2_work=88.406927 

tx=295552609 date='2020-12-01T20:21:58Z' 

progress=0.999911 

cache=401.8MiB(2332884txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=000000000000000036d4885b9c3d95fe40ecb

caf1e2d285fb9eb4ed218c28924 height=662727 

version=0x20000000 log2_work=88.406927 

tx=295552672 date='2020-12-01T20:36:45Z' 

progress=0.999921 

cache=401.9MiB(2332963txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=000000000000000055bff8ca0427cae84d216

f2801bf1f339794f99e3159569d height=662728 

version=0x20000000 log2_work=88.406927 

tx=295552725 date='2020-12-01T20:51:56Z' 

progress=0.999931 

cache=401.9MiB(2333046txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=000000000000000039c070a969fc765f20319

32d9d7c1f64a941d9a026615a1c height=662729 

version=0x3665c000 log2_work=88.406927 

tx=295552789 date='2020-12-01T21:15:24Z' 

progress=0.999946 

cache=401.9MiB(2333144txo) 

2020-12-01T22:38:52Z Park block 

000000000000000021aa2bc72cafb2cb4b46282067

6f6f997ca770a3491f2d20 as it would cause a 

deep reorg. 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000005aed86b69eb9adc40b1e0

76007a840e3ce76f03d73fb3a56 height=662730 

version=0x20c00000 log2_work=88.406927 

tx=295552791 date='2020-12-01T21:15:46Z' 

progress=0.999946 

cache=401.9MiB(2333146txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000000f43113d74f426be53cc4

6ece2978d91e37e914abb5fc8e3 height=662731 

version=0x20000000 log2_work=88.406927 

tx=295552861 date='2020-12-01T21:47:53Z' 

progress=0.999967 

cache=401.9MiB(2333208txo) 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000004dca285e690ce3182654f

7afb006cc07757ef5f1fe6e32aa height=662732 

version=0x20800000 log2_work=88.406928 

tx=295552947 date='2020-12-01T22:26:30Z' 

progress=0.999992 

cache=401.9MiB(2333297txo) 

2020-12-01T22:38:52Z Park block 

000000000000000038b752df8d0de6f6dd23f54a20

a6d1f66d91c5143e6c7dbc as it would cause a 

deep reorg. 

2020-12-01T22:38:52Z UpdateTip: new 

best=00000000000000001ea3a6be94733d6bca00b

1bbbabc3b5d92ce4a09f140a3c8 height=662733 

version=0x20000000 log2_work=88.406928 

tx=295552950 date='2020-12-01T22:26:58Z' 

progress=0.999992 

cache=401.9MiB(2333317txo) 

2020-12-01T22:38:52Z Park block 

00000000000000003d7cf73caa7a7b7c4327789e0f



d6d77236857969fcd4f2c1 as it would cause a 

deep reorg. 

2020-12-01T22:38:52Z Park block 

000000000000000002f93d655cf8dff674091eee84

8fcd33e520b940cd6cb43c as it would cause a 

deep reorg. 

2020-12-01T22:38:52Z Park block 

00000000000000002132e6597460cc9847daf8dad5

75afb1a3af343f15c6affb as it would cause a 

deep reorg. 

2020-12-01T22:38:52Z Park block 

0000000000000000052063889768c9edefe0737332

41444d57be155e5a005735 as it would cause a 

deep reorg. 

2020-12-01T22:38:52Z Park block 

00000000000000003aa7e890cf55d26aa81352270a

b17f59c0a35c951c58282a as it would cause a 

deep reorg. 

 

** Finalization causes the most POW chain 

to be invalidated **

2020-12-01T22:38:52Z Mark block 

000000000000000003e7ea491122031d5508d60ccd

78665fd8000efb37eb1e85 invalid because it 

forks prior to the finalization point 

662723. 

2020-12-01T22:38:52Z InvalidChainFound: 

invalid 

block=000000000000000003e7ea491122031d5508

d60ccd78665fd8000efb37eb1e85  

height=662858  log2_work=88.406959  

date=2020-12-01T20:07:07Z 

2020-12-01T22:38:52Z InvalidChainFound:  

current 

best=00000000000000001ea3a6be94733d6bca00b

1bbbabc3b5d92ce4a09f140a3c8  height=662733  

log2_work=88.406928  date=2020-12-

01T22:26:58Z 

 

** Finalization invalidation prevents the 

switch to the > POW chain during 

synchronization ** 

2020-12-01T22:38:52Z Considered switching 

to better tip 

000000000000000003e7ea491122031d5508d60ccd

78665fd8000efb37eb1e85 but that chain 

contains an invalid block. 

2020-12-01T22:38:52Z 

CheckForkWarningConditions: Warning: Large 

fork found 

  forking the chain at height 662686 

(00000000000000003cdfa4fb383f133cc22596eea

61cb2bb4a2501cf20238f09) 

  lasting to height 662858 

(000000000000000003e7ea491122031d5508d60cc

d78665fd8000efb37eb1e85). 

Appendix 1

Probability Calculations for the

Figures

#!/usr/bin/python3 

# Blockchain reorganization probability 

calculator 

# Copyright 2020 G. Andrew Stone 

# MIT Licensed 

(https://opensource.org/licenses/MIT) 

 

# This file calculates and plots: 

# 1. Satoshi (tie) double spend attack 

(chain reorganization) probabilities 

# 2. Winning (1 extra block) double spend 

attack probabilities 

# 3. Limited depth double spend attack 

probabilities 

# 4. Chain matching attack probabilities 

verses finalization and/or parking 

blockchains 

 

import math 

 

def dspart(z,q,k): 

    p = 1.0 - q 

    lam = (z+1)*q/p 

    a = (lam**k)/(math.factorial(k)*

(math.e**lam)) 

    b = 1.0 - ((q/p)**(z+1-k)) 

    return a*b 

 

def doublespendAttack(z,q): 

    if (q>0.5): 

        return 1.0 

    sm = 0.0 

    for k in range(0,z+2): # +2 because 

range is not end inclusive, and it must be 

+1 because the attacker chain must exceed 

the honest 

        t = dspart(z,q,k) 

        sm += t 

    return 1.0 - sm 

 

def doublespendAttackTie(z,q): 

    if (q>0.5): 

        return 1.0 

    sm = 0.0 

    for k in range(0,z+1): # +1 because 

range is not end inclusive 

        t = dspart(z,q,k) 

        sm += t 

    return 1.0 - sm 

 

def poisson(success, lam): 

    return (  

(lam**success)/(math.factorial(success)*

(math.e**lam)) ) 

 

# The likelihood of poisson from success 

to infinity 

def poissonNabove(success, lam): 

    acc = 0.0 

    for i in range(0,success):  # goes 

from 0 to success-1 inclusive 

        acc += poisson(i,lam) 

    return 1-acc 

 

 

calced2={} 

def FinParkFork(attackerHash, Mlen, Flen, 

finalizationDepth, park): 

    # print(Flen, Mlen) 

    if (Flen >= finalizationDepth): 



        return 1.0 

 

    if park: 

    # cannot fall behind in fork depth 1 & 

2 

        if (Mlen<3 and Flen<Mlen): 

            return 0.0 

    # can fall behind no more than 1 block 

in fork depth 3 

        elif (Mlen==3 and Flen<2): 

            return 0.0 

    # for other fork depths, attacker 

cannot fall behind more than double 

        elif (Flen*2 < Mlen): 

            return 0.0 

    elif (Flen < Mlen):  # without 

parking, fork cannot ever fall behind 

        return 0.0 

 

    # Look in the cache for values we've 

already found 

    if 

(float(attackerHash),Mlen,Flen,finalizatio

nDepth,park) in calced2: 

        return 

calced2[(float(attackerHash),Mlen,Flen,fin

alizationDepth,park)] 

 

    honestHash = 1-attackerHash 

    interval = attackerHash/honestHash 

 

    acc = 0.0 

    for i in range(0,finalizationDepth-

Flen): 

        # Model the F chain finding i 

blocks while the M chain finds 1 

        acc += 

poisson(i,interval)*FinParkFork(attackerHa

sh, Mlen+1, Flen+i, finalizationDepth, 

park) 

    # Model the F chain finding more than 

what it needs to win in this one interval 

    acc += 

poissonNabove(finalizationDepth-Flen, 

interval) 

 

    

calced2[(float(attackerHash),Mlen,Flen,fin

alizationDepth,park)] = acc 

    return acc 

 

calced3={} 

def limitedDoubleSpendAttack(attackerHash, 

embargo, maxDepth, Mlen, Flen, park): 

    if park is True: # we are assuming the 

embargo is > 3 so the early parking rules 

do not matter 

        if Flen > Mlen*2 and Flen > 

embargo: 

            return 1.0 

        calcDepth = maxDepth*2 

    else: 

        if Flen > Mlen and Flen > embargo: 

            return 1.0 

        calcDepth = maxDepth 

 

    if (Mlen >= maxDepth): # Too late! 

        return 0.0 

 

    # Look in the cache for values we've 

already found 

    if 

(float(attackerHash),embargo,Mlen,Flen,max

Depth,park) in calced3: 

        return 

calced3[(float(attackerHash),embargo,Mlen,

Flen,maxDepth,park)] 

 

    honestHash = 1-attackerHash 

    interval = attackerHash/honestHash 

 

    acc = 0.0 

    for i in range(0,calcDepth-Flen): 

        # Model the F chain finding i 

blocks while the M chain finds 1 

        acc += 

poisson(i,interval)*limitedDoubleSpendAtta

ck(attackerHash, embargo, maxDepth, 

Mlen+1, Flen+i, park) 

    # Model the F chain finding more than 

what it needs to win in this one interval 

    acc += poissonNabove(calcDepth-Flen, 

interval) 

 

    

calced3[(float(attackerHash),embargo,Mlen,

Flen,maxDepth,park)] = acc 

    return acc 

 

 

import numpy as np 

import matplotlib.pyplot as pyplot 

 

def plotFig1(): 

    x = np.linspace(start=0.0, stop=0.99, 

num=100) 

    fig = pyplot.figure(1) 

    plt = fig.add_subplot() 

    plt.grid(color=(0.8,0.8,0.8)) 

    plt.set_xlabel('Attacker hash 

proportion', fontsize=15) 

    plt.set_ylabel('Success probability', 

fontsize=15) 

 

    y2 = [ FinParkFork(i,0,0,1,False) for 

i in x] 

    plt.plot(x, y2, color=(.97,.95,0.9)) 

 

    y2 = [ FinParkFork(i,0,0,2,False) for 

i in x] 

    plt.plot(x, y2, color=(.95,.88,0.8)) 

 

    y1 = [ FinParkFork(i,0,0,5,False) for 

i in x] 

    plt.plot(x, y1, color=(.9,.8,.7)) 

 

 

    y3 = [ FinParkFork(i,0,0,20,False) for 

i in x] 

    plt.plot(x, y3, color=(.8,.7,.8)) 

    y4 = [ FinParkFork(i,0,0,40,False) for 

i in x] 

    plt.plot(x, y4, color=(.9,.8,.9)) 

 



    y = [ FinParkFork(i,0,0,10,False) for 

i in x] 

    plt.plot(x, y, color=(.9,0,0)) 

 

    fig.suptitle("Success Probability for 

the Matching Fork Attack\nat 

1,2,5,10(red),20,and 40 block 

autofinalizations", fontsize=16) 

    fig.show() 

 

def plotFig2(): 

    x = np.linspace(start=0.0, stop=0.99, 

num=100) 

    fig = pyplot.figure(2) 

    plt = fig.add_subplot() 

    plt.grid(color=(0.8,0.8,0.8)) 

    plt.set_xlabel('Attacker hash 

proportion', fontsize=15) 

    plt.set_ylabel('Success probability', 

fontsize=15) 

 

    y2 = [ FinParkFork(i,0,0,1,True) for i 

in x] 

    plt.plot(x, y2, color=(.97,.95,0.9)) 

 

    y2 = [ FinParkFork(i,0,0,2,True) for i 

in x] 

    plt.plot(x, y2, color=(.95,.88,0.8)) 

 

    y1 = [ FinParkFork(i,0,0,5,True) for i 

in x] 

    plt.plot(x, y1, color=(.9,.8,.7)) 

 

    y3 = [ FinParkFork(i,0,0,20,True) for 

i in x] 

    plt.plot(x, y3, color=(.8,.7,.8)) 

    y4 = [ FinParkFork(i,0,0,40,True) for 

i in x] 

    plt.plot(x, y4, color=(.9,.8,.9)) 

 

    y = [ FinParkFork(i,0,0,10,True) for i 

in x] 

    plt.plot(x, y, color=(.9,0,0)) 

 

    fig.suptitle("Success Probability for 

the Matching Fork Attack\nat 

1,2,5,10(red),20,and 40 block parked 

autofinalizations", fontsize=16) 

    fig.show() 

 

def plotFig3_differentAttacks(): 

    x = np.linspace(start=0.0, stop=0.99, 

num=100) 

    fig = pyplot.figure(3) 

    plt = fig.add_subplot() 

    plt.grid(color=(0.8,0.8,0.8)) 

    plt.set_xlabel('Attacker hash 

proportion', fontsize=15) 

    plt.set_ylabel('Success probability', 

fontsize=15) 

 

    # Green: standard doublespend attack, 

with a 10 block embargo period 

    z = [ doublespendAttack(10,i) for i in 

x] 

    plt.plot(x, z, color=(0,.9,0)) 

 

    # Blue: 10 block doublespend attack 

with 10 block embargo period 

    embargo = 10 

    ldsa = [ limitedDoubleSpendAttack(i, 

embargo, 10, 0, 0, False) for i in x] 

    plt.plot(x, ldsa, color=(0,0,.9)) 

 

    # Yellow: 10 block DS with 10 block 

embargo & parking 

    ldsa = [ limitedDoubleSpendAttack(i, 

embargo, 10, 0, 0, True) for i in x] 

    plt.plot(x, ldsa, color=(0.9,0.9,0)) 

 

    # Red: 10 block Fork Matching attack 

against finalization & parking 

    y = [ FinParkFork(i,0,0,10,True) for i 

in x] 

    plt.plot(x, y, color=(.9,0,0)) 

 

    # Orange: 10 block Fork Matching 

attack against finalization only 

    yy = [ FinParkFork(i,0,0,10, False) 

for i in x] 

    plt.plot(x, yy, color=(.9,.5,.2)) 

 

    fig.suptitle("Attack Comparison", 

fontsize=16) 

    fig.show() 

 

def Test(): 

    print("F  50% at 10: ", 

FinParkFork(0.5,0,0,10,False)) 

    print("F  66% at 10: ", 

FinParkFork(2.0/3.0,0,0,10,False)) 

    print("F  75% at 10: ", 

FinParkFork(0.75,0,0,10,False)) 

    print("PF 50% at 10: ", 

FinParkFork(0.5,0,0,10,True)) 

    print("PF 66% at 10: ", 

FinParkFork(2.0/3.0,0,0,10,True)) 

    print("PF 75% at 10: ", 

FinParkFork(0.75,0,0,10,True)) 

 

    plotFig1() 

    plotFig2() 

    plotFig3_differentAttacks() 

 

if __name__ == "__main__": 

    Test() 

    import code 

    code.interact() 
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