
Chapter 8
Public-Key Cryptosystems Based on the Discrete
Logarithm Problem

In the previous chapter we learned about the RSA public-key scheme. As we have
seen, RSA is based on the hardness of factoring large integers. The integer factoriza-
tion problem is said to be the one-way function of RSA. As we saw earlier, roughly
speaking a function is one-way if it is computationally easy to compute the func-
tion f (x) = y, but computationally infeasible to invert the function: f−1(y) = x. The
question is whether we can find other one-way functions for building asymmetric
crypto schemes. It turns out that most non-RSA public-key algorithms with practical
relevance are based on another one-way function, the discrete logarithm problem.

In this chapter you will learn:

! The Diffie–Hellman key exchange
! Cyclic groups which are important for a deeper understanding of Diffie–Hellman

key exchange
! The discrete logarithm problem, which is of fundamental importance for many

practical public-key algorithms
! Encryption using the Elgamal scheme

The security of many cryptographic schemes relies on the computational in-
tractability of finding solutions to the Discrete Logarithm Problem (DLP). Well-
known examples of such schemes are the Diffie–Hellman key exchange and the
Elgamal encryption scheme, both of which will be introduced in this chapter. Also,
the Elgamal digital signature scheme (cf. Section 8.5.1) and the digital signature
algorithm (cf. Section 10.2) are based on the DLP, as are cryptosystems based on
elliptic curves (Section 9.3).

We start with the basic Diffie–Hellman protocol, which is surprisingly simple
and powerful. The discrete logarithm problem is defined in what are called cyclic
groups. The concept of this algebraic structure is introduced in Section 8.2. A formal
definition of the DLP as well as some illustrating examples are provided, followed
by a brief description of attack algorithms for the DLP. With this knowledge we will
revisit the Diffie–Hellman protocol and more formally talk about its security. We
will then develop a method for encrypting data using the DLP that is known as the
Elgamal cryptosystem.

C. Paar, J. Pelzl, Understanding Cryptography, 205
DOI 10.1007/978-3-642-04101-3 8, c⃝ Springer-Verlag Berlin Heidelberg 2010

http://www.crypto-textbook.com/

Understanding Cryptography:
A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl
1st ed. 2010 Edition

206 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

8.1 Diffie–Hellman Key Exchange

The Diffie–Hellman key exchange (DHKE), proposed by Whitfield Diffie and Mar-
tin Hellman in 1976 [58], was the first asymmetric scheme published in the open
literature. The two inventors were also influenced by the work of Ralph Merkle.
It provides a practical solution to the key distribution problem, i.e., it enables two
parties to derive a common secret key by communicating over an insecure chan-
nel1. The DHKE is a very impressive application of the discrete logarithm problem
that we’ll study in the subsequent sections. This fundamental key agreement tech-
nique is implemented in many open and commercial cryptographic protocols like
Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol Security
(IPSec).The basic idea behind the DHKE is that exponentiation in Z∗

p, p prime, is a
one-way function and that exponentiation is commutative, i.e.,

k = (αx)y ≡ (αy)x mod p

The value k ≡ (αx)y ≡ (αy)x mod p is the joint secret which can be used as the
session key between the two parties.

Let us now consider how the Diffie–Hellman key exchange protocol over Z∗
p

works. In this protocol we have two parties, Alice and Bob, who would like to
establish a shared secret key. There is possibly a trusted third party that properly
chooses the public parameters which are needed for the key exchange. However, it is
also possible that Alice or Bob generate the public parameters. Strictly speaking, the
DHKE consists of two protocols, the set-up protocol and the main protocol, which
performs the actual key exchange. The set-up protocol consists of the following
steps:

Diffie–Hellman Set-up

1. Choose a large prime p.
2. Choose an integer α ∈ {2,3, . . . , p−2}.
3. Publish p and α .

These two values are sometimes referred to as domain parameters. If Alice and
Bob both know the public parameters p and α computed in the set-up phase, they
can generate a joint secret key k with the following key-exchange protocol:

1 The channel needs to be authenticated, but that will be discussed later in this book.

8.1 Diffie–Hellman Key Exchange 207

Diffie–Hellman Key Exchange

Alice Bob
choose a = kpr,A ∈ {2, . . . , p−2} choose b = kpr,B ∈ {2, . . . , p−2}
compute A = kpub,A ≡ αa mod p compute B = kpub,B ≡ αb mod p

kpub,A=A
−−−−−−−−−−−−−−→

kpub,B=B
←−−−−−−−−−−−−−−

kAB = k
kpr,A
pub,B ≡ Ba mod p kAB = k

kpr,B
pub,A ≡ Ab mod p

Here is the proof that this surprisingly simple protocol is correct, i.e., that Alice
and Bob in fact compute the same session key kAB.

Proof. Alice computes
Ba ≡ (αb)a ≡ αab mod p

while Bob computes
Ab ≡ (αa)b ≡ αab mod p

and thus Alice and Bob both share the session key kAB ≡ αab mod p. The key can
now be used to establish a secure communication between Alice and Bob, e.g., by
using kAB as key for a symmetric algorithm like AES or 3DES. ⊓(

We’ll look now at a simple example with small numbers.

Example 8.1. The Diffie–Hellman domain parameters are p = 29 and α = 2. The
protocol proceeds as follows:

Alice Bob
choose a = kpr,A = 5 choose b = kpr,B = 12
A = kpub,A = 25 ≡ 3 mod 29 B = kpub,B = 212 ≡ 7 mod 29

A=3−−−−−−−−−−−−→
B=7←−−−−−−−−−−−−

kAB = Ba ≡ 75 = 16 mod 29 kAB = Ab = 312 ≡ 16 mod 29

As one can see, both parties compute the value kAB = 16, which can be used as a
joint secret, e.g., as a session key for symmetric encryption.

⋄

The computational aspects of the DHKE are quite similar to those of RSA. Dur-
ing the set-up phase, we generate p using the probabilistic prime-finding algorithms
discussed in Section 7.6. As shown in Table 6.1, p should have a similar length as
the RSA modulus n, i.e., 1024 or beyond, in order to provide strong security. The
integer α needs to have a special property: It should be a primitive element, a topic
which we discuss in the following sections. The session key kAB that is being com-
puted in the protocol has the same bit length as p. If we want to use it as a symmetric
key for algorithms such as AES, we can simply take the 128 most significant bits.
Alternatively, a hash function is sometimes applied to kAB and the output is then
used as a symmetric key.

208 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

During the actual protocol, we first have to choose the private keys a and b.
They should stem from a true random generator in order to prevent an attacker from
guessing them. For computing the public keys A and B as well as for computing the
session key, both parties can make use of the square-and-multiply algorithm. The
public keys are typically precomputed. The main computation that needs to be done
for a key exchange is thus the exponentiation for the session key. In general, since
the bit lengths and the computations of RSA and the DHKE are very similar, they
require a similar effort. However, the trick of using short public exponents that was
shown in Section 7.5 is not applicable to the DHKE.

What we showed so far is the classic Diffie–Hellman key exchange protocol in
the group Z∗

p, where p is a prime. The protocol can be generalized, in particular to
groups of elliptic curves. This gives rise to elliptic curve cryptography, which has
become a very popular asymmetric scheme in practice. In order to better understand
elliptic curves and schemes such as Elgamal encryption, which are also closely re-
lated to the DHKE, we introduce the discrete logarithm problem in the following
sections. This problem is the mathematical basis for the DHKE. After we have in-
troduced the discrete logarithm problem, we will revisit the DHKE and discuss its
security.

8.2 Some Algebra

This section introduces some fundamentals of abstract algebra, in particular the no-
tion of groups, subgroups, finite groups and cyclic groups, which are essential for
understanding discrete logarithm public-key algorithms.

8.2.1 Groups

For convenience, we restate here the definition of groups which was introduced in
the Chapter 4:

8.2 Some Algebra 209

Definition 8.2.1 Group
A group is a set of elements G together with an operation ◦ which
combines two elements of G. A group has the following properties.

1. The group operation ◦ is closed. That is, for all a,b,∈G, it holds
that a◦b = c ∈ G.

2. The group operation is associative. That is, a◦(b◦c) = (a◦b)◦c
for all a,b,c ∈ G.

3. There is an element 1∈G, called the neutral element (or identity
element), such that a◦1 = 1◦a = a for all a ∈ G.

4. For each a ∈ G there exists an element a−1 ∈ G, called the in-
verse of a, such that a◦a−1 = a−1 ◦a = 1.

5. A group G is abelian (or commutative) if, furthermore, a ◦ b =
b◦a for all a,b ∈ G.

Note that in cryptography we use both multiplicative groups, i.e., the operation
“◦” denotes multiplication, and additive groups where “◦” denotes addition. The
latter notation is used for elliptic curves as we’ll see later.

Example 8.2. To illustrate the definition of groups we consider the following exam-
ples.

! (Z,+) is a group, i.e., the set of integers Z = {. . . ,−2,−1,0,1,2, . . .} together
with the usual addition forms an abelian group, where e = 0 is the identity ele-
ment and −a is the inverse of an element a ∈ Z.

! (Z without 0, ·) is not a group, i.e., the set of integers Z (without the element
0) and the usual multiplication does not form a group since there exists no inverse
a−1 for an element a ∈ Z with the exception of the elements −1 and 1.

! (C, ·) is a group, i.e., the set of complex numbers u+ iv with u,v ∈R and i2 =−1
together with the complex multiplication defined by

(u1 + iv1) · (u2 + iv2) = (u1u2 − v1v2)+ i(u1v2 + v1u2)

forms an abelian group. The identity element of this group is e = 1, and the
inverse a−1 of an element a = u+ iv ∈ C is given by a−1 = (u− i)/(u2 + v2).

⋄

However, all of these groups do not play a significant role in cryptography be-
cause we need groups with a finite number of elements. Let us now consider the
group Z∗

n which is very important for many cryptographic schemes such as DHKE,
Elgamal encryption, digital signature algorithm and many others.

210 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

Theorem 8.2.1
The set Z∗

n which consists of all integers i = 0,1, . . . ,n−1 for which
gcd(i,n) = 1 forms an abelian group under multiplication modulo
n. The identity element is e = 1.

Let us verify the validity of the theorem by considering the following example:

Example 8.3. If we choose n = 9, Z∗
n consists of the elements {1,2,4,5,7,8}.

Table 8.1 Multiplication table for Z∗
9

× mod 9 1 2 4 5 7 8
1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

By computing the multiplication table for Z∗
9, depicted in Table 8.1, we can eas-

ily check most conditions from Definition 8.2.1. Condition 1 (closure) is satisfied
since the table only consists of integers which are elements of Z∗

9. For this group
Conditions 3 (identity) and 4 (inverse) also hold since each row and each column
of the table is a permutation of the elements of Z∗

9. From the symmetry along the
main diagonal, i.e., the element at row i and column j equals the element at row j
and column i, we can see that Condition 5 (commutativity) is satisfied. Condition
2 (associativity) cannot be directly derived from the shape of the table but follows
immediately from the associativity of the usual multiplication in Zn.

⋄

Finally, the reader should remember from Section 6.3.1 that the inverse a−1 of
each element a ∈ Z∗

n can be computed by using the extended Euclidean algorithm.

8.2.2 Cyclic Groups

In cryptography we are almost always concerned with finite structures. For instance,
for AES we needed a finite field. We provide now the straightforward definition of
a finite group:

8.2 Some Algebra 211

Definition 8.2.2 Finite Group
A group (G, ◦) is finite if it has a finite number of elements. We
denote the cardinality or order of the group G by |G|.

Example 8.4. Examples of finite groups are:

! (Zn,+): the cardinality of Zn is |Zn| = n since Zn = {0,1,2, . . . ,n−1}.
! (Z∗

n, ·): remember that Z∗
n is defined as the set of positive integers smaller than

n which are relatively prime to n. Thus, the cardinality of Z∗
n equals Euler’s phi

function evaluated for n, i.e., |Z∗
n| = Φ(n). For instance, the group Z∗

9 has a car-
dinality of Φ(9) = 32−31 = 6. This can be verified by the earlier example where
we saw that the group consist of the six elements {1,2,4,5,7,8}.
⋄

The remainder of this section deals with a special type of groups, namely cyclic
groups, which are the basis for discrete logarithm-based cryptosystems. We start
with the following definition:

Definition 8.2.3 Order of an element
The order ord(a) of an element a of a group (G,◦) is the smallest
positive integer k such that

ak = a◦a◦ . . .◦a︸ ︷︷ ︸
k times

= 1,

where 1 is the identity element of G.

We’ll examine this definition by looking at an example.

Example 8.5. We try to determine the order of a = 3 in the group Z∗
11. For this, we

keep computing powers of a until we obtain the identity element 1.

a1 = 3
a2 = a ·a = 3 ·3 = 9
a3 = a2 ·a = 9 ·3 = 27 ≡ 5 mod 11
a4 = a3 ·a = 5 ·3 = 15 ≡ 4 mod 11
a5 = a4 ·a = 4 ·3 = 12 ≡ 1 mod 11

From the last line it follows that ord(3) = 5.
⋄

It is very interesting to look at what happens if we keep multiplying the result by
a:

212 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

a6 = a5 ·a ≡ 1 ·a ≡ 3 mod 11
a7 = a5 ·a2 ≡ 1 ·a2 ≡ 9 mod 11
a8 = a5 ·a3 ≡ 1 ·a3 ≡ 5 mod 11
a9 = a5 ·a4 ≡ 1 ·a4 ≡ 4 mod 11
a10 = a5 ·a5 ≡ 1 ·1 ≡ 1 mod 11
a11 = a10 ·a ≡ 1 ·a ≡ 3 mod 11

...

We see that from this point on, the powers of a run through the sequence {3,9,5,4,1}
indefinitely. This cyclic behavior gives rise to following definition:

Definition 8.2.4 Cyclic Group
A group G which contains an element α with maximum order
ord(α) = |G| is said to be cyclic. Elements with maximum order
are called primitive elements or generators.

An element α of a group G with maximum order is called a generator since
every element a of G can be written as a power α i = a of this element for some i,
i.e., α generates the entire group. Let us verify these properties by considering the
following example.

Example 8.6. We want to check whether a = 2 happens to be a primitive element of
Z∗

11 = {1,2,3,4,5,6,7,8,9,10}. Note that the cardinality of the group is |Z∗
11|= 10.

Let’s look at all the elements that are generated by powers of the element a = 2:

a = 2 a6 ≡ 9 mod 11
a2 = 4 a7 ≡ 7 mod 11
a3 = 8 a8 ≡ 3 mod 11
a4 ≡ 5 mod 11 a9 ≡ 6 mod 11
a5 ≡ 10 mod 11 a10 ≡ 1 mod 11

From the last result it follows that

ord(a) = 10 = |Z∗
11|.

This implies that (i) a = 2 is a primitive element and (ii) |Z∗
11| is cyclic.

We now want to verify whether the powers of a = 2 actually generate all elements
of the group Z∗

11. Let’s look again at all the elements that are generated by powers
of two.

i 1 2 3 4 5 6 7 8 9 10
ai 2 4 8 5 10 9 7 3 6 1

By looking at the bottom row, we see that that the powers 2i in fact generate all
elements of the group Z∗

11. We note that the order in which they are generated looks
quite arbitrary. This seemingly random relationship between the exponent i and the

8.2 Some Algebra 213

group elements is the basis for cryptosystems such as the Diffie–Hellman key ex-
change.

⋄

From this example we see that the group Z∗
11 has the element 2 as a generator. It

is important to stress that the number 2 is not necessarily a generator in other cyclic
groups Z∗

n. For instance, in Z∗
7, ord(2) = 3, and the element 2 is thus not a generator

in that group.
Cyclic groups have interesting properties. The most important ones for crypto-

graphic applications are given in the following theorems.

Theorem 8.2.2 For every prime p, (Z∗
p, ·) is an abelian finite cyclic

group.

This theorem states that the multiplicative group of every prime field is cyclic.
This has far reaching consequences in cryptography, where these groups are the
most popular ones for building discrete logarithm cryptosystems. In order to under-
line the practical relevance of these somewhat esoteric looking theorem, consider
that almost every Web browser has a cryptosystem over Z∗

p built in.

Theorem 8.2.3
Let G be a finite group. Then for every a ∈ G it holds that:

1. a|G| = 1
2. ord(a) divides |G|

The first property is a generalization of Fermat’s Little Theorem for all cyclic
groups. The second property is very useful in practice. It says that in a cyclic group
only element orders which divide the group cardinality exist.

Example 8.7. We consider again the group Z∗
11 which has a cardinality of |Z∗

11|= 10.
The only element orders in this group are 1, 2, 5, and 10, since these are the only
integers that divide 10. We verify this property by looking at the order of all elements
in the group:

ord(1) = 1 ord(6) = 10
ord(2) = 10 ord(7) = 10
ord(3) = 5 ord(8) = 10
ord(4) = 5 ord(9) = 5
ord(5) = 5 ord(10) = 2

Indeed, only orders that divide 10 occur.
⋄

214 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

Theorem 8.2.4 Let G be a finite cyclic group. Then it holds that
1. The number of primitive elements of G is Φ(|G|).
2. If |G| is prime, then all elements a ̸= 1 ∈ G are primitive.

The first property can be verified by the example above. Since Φ(10) = (5−
1)(2− 1) = 4, the number of primitive elements is four, which are the elements 2,
6, 7 and 8. The second property follows from the previous theorem. If the group
cardinality is prime, the only possible element orders are 1 and the cardinality itself.
Since only the element 1 can have an order of one, all other elements have order p.

8.2.3 Subgroups

In this section we consider subsets of (cyclic) groups which are groups themselves.
Such sets are referred to as subgroups. In order to check whether a subset H of a
group G is a subgroup, one can verify if all the properties of our group definition in
Section 8.2.1 also hold for H. In the case of cyclic groups, there is an easy way to
generate subgroups which follows from this theorem:

Theorem 8.2.5 Cyclic Subgroup Theorem
Let (G,◦) be a cyclic group. Then every element a ∈ G with
ord(a) = s is the primitive element of a cyclic subgroup with s ele-
ments.

This theorem tells us that any element of a cyclic group is the generator of a sub-
group which in turn is also cyclic.

Example 8.8. Let us verify the above theorem by considering a subgroup of G =
Z∗

11. In an earlier example we saw that ord(3) = 5, and the powers of 3 generate the
subset H = {1,3,4,5,9} according to Theorem 8.2.5. We verify now whether this
set is actually a group by having a look at its multiplication table:

Table 8.2 Multiplication table for the subgroup H = {1,3,4,5,9}
× mod 11 1 3 4 5 9

1 1 3 4 5 9
3 3 9 1 4 5
4 4 1 5 9 3
5 5 4 9 3 1
9 9 5 3 1 4

H is closed under multiplication modulo 11 (Condition 1) since the table only
consists of integers which are elements of H. The group operation is obviously as-

8.2 Some Algebra 215

sociative and commutative since it follows regular multiplication rules (Conditions
2 and 5, respectively). The neutral element is 1 (Condition 3), and for every element
a ∈ H there exists an inverse a−1 ∈ H which is also an element of H (Condition 4).
This can be seen from the fact that every row and every column of the table contains
the identity element. Thus, H is a subgroup of Z∗

11 (depicted in Figure 8.1).

�
� �

�
�

��

�

� 	
�

�

Fig. 8.1 Subgroup H of the cyclic group G = Z∗
11

More precisely, it is a subgroup of prime order 5. It should also be noted that 3 is
not the only generator of H but also 4, 5 and 9, which follows from Theorem 8.2.4.

⋄

An important special case are subgroups of prime order. If this group cardinality
is denoted by q, all non-one elements have order q according to Theorem 8.2.4.

From the Cyclic Subgroup Theorem we know that each element a ∈ G of a group
G generates some subgroup H. By using Theorem 8.2.3, the following theorem
follows.

Theorem 8.2.6 Lagrange’s theorem
Let H be a subgroup of G. Then |H| divides |G|.

Let us now consider an application of Lagrange’s theorem:

Example 8.9. The cyclic group Z∗
11 has cardinality |Z∗

11| = 10 = 1 · 2 · 5. Thus, it
follows that the subgroups of Z∗

11 have cardinalities 1, 2, 5 and 10 since these are
all possible divisors of 10. All subgroups H of Z∗

11 and their generators α are given
below:

subgroup elements primitive elements
H1 {1} α = 1
H2 {1,10} α = 10
H3 {1,3,4,5,9} α = 3,4,5,9

⋄

The following final theorem of this section fully characterizes the subgroups of
a finite cyclic group:

216 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

Theorem 8.2.7
Let G be a finite cyclic group of order n and let α be a generator
of G. Then for every integer k that divides n there exists exactly one
cyclic subgroup H of G of order k. This subgroup is generated by
αn/k. H consists exactly of the elements a ∈ G which satisfy the
condition ak = 1. There are no other subgroups.

This theorem gives us immediately a construction method for a subgroup from a
given cyclic group. The only thing we need is a primitive element and the group
cardinality n. One can now simple compute αn/k and obtains a generator of the
subgroup with k elements.

Example 8.10. We again consider the cyclic group Z∗
11. We saw earlier that α = 8 is

a primitive element in the group. If we want to have a generator β for the subgroup
of order 2, we compute:

β = αn/k = 810/2 = 85 = 32768 ≡ 10 mod 11.

We can now verify that the element 10 in fact generates the subgroup with two
elements: β 1 = 10, β 2 = 100 ≡ 1 mod 11, β 3 ≡ 10 mod 11, etc.

Remark: Of course, there are smarter ways of computing 85 mod 11, e.g., through
85 = 82 82 8 ≡ (−2)(−2)8 ≡ 32 ≡ 10 mod 11.

⋄

8.3 The Discrete Logarithm Problem

After the somewhat lengthy introduction to cyclic groups one might wonder how
they are related to the rather straightforward DHKE protocol. It turns out that the
underlying one-way function of the DHKE, the discrete logarithm problem (DLP),
can directly be explained using cyclic groups.

8.3.1 The Discrete Logarithm Problem in Prime Fields

We start with the DLP over Z∗
p, where p is a prime.

8.3 The Discrete Logarithm Problem 217

Definition 8.3.1 Discrete Logarithm Problem (DLP) in Z∗
p

Given is the finite cyclic group Z∗
p of order p−1 and a primitive el-

ement α ∈Z∗
p and another element β ∈Z∗

p. The DLP is the problem
of determining the integer 1 ≤ x ≤ p−1 such that:

αx ≡ β mod p

Remember from Section 8.2.2 that such an integer x must exist since α is a primi-
tive element and each group element can be expressed as a power of any primitive
element. This integer x is called the discrete logarithm of β to the base α , and we
can formally write:

x = logα β mod p.

Computing discrete logarithms modulo a prime is a very hard problem if the param-
eters are sufficiently large. Since exponentiation αx ≡ β mod p is computationally
easy, this forms a one-way function.

Example 8.11. We consider a discrete logarithm in the group Z∗
47, in which α = 5 is

a primitive element. For β = 41 the discrete logarithm problem is: Find the positive
integer x such that

5x ≡ 41 mod 47

Even for such small numbers, determining x is not entirely straightforward. By using
a brute-force attack, i.e., systematically trying all possible values for x, we obtain
the solution x = 15.

⋄

In practice, it is often desirable to have a DLP in groups with prime cardinality in
order to prevent the Pohlig–Hellman attack (cf. Section 8.3.3). Since groups Z∗

p have
cardinality p−1, which is obviously not prime, one often uses DLPs in subgroups
of Z∗

p with prime order, rather than using the group Z∗
p itself. We illustrate this with

an example.

Example 8.12. We consider the group Z∗
47 which has order 46. The subgroups in

Z∗
47 have thus a cardinality of 23, 2 and 1. α = 2 is an element in the subgroup

with 23 elements, and since 23 is a prime, α is a primitive element in the subgroup.
A possible discrete logarithm problem is given for β = 36 (which is also in the
subgroup): Find the positive integer x, 1 ≤ x ≤ 23, such that

2x ≡ 36 mod 47

By using a brute-force attack, we obtain a solution for x = 17.
⋄

218 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

8.3.2 The Generalized Discrete Logarithm Problem

The feature that makes the DLP particularly useful in cryptography is that it is not
restricted to the multiplicative group Z∗

p, p prime, but can be defined over any cyclic
groups. This is called the generalized discrete logarithm problem (GDLP) and can
be stated as follows.

Definition 8.3.2 Generalized Discrete Logarithm Problem
Given is a finite cyclic group G with the group operation ◦ and
cardinality n. We consider a primitive element α ∈ G and another
element β ∈ G. The discrete logarithm problem is finding the inte-
ger x, where 1 ≤ x ≤ n, such that:

β = α ◦α ◦ . . .◦α︸ ︷︷ ︸
x times

= αx

As in the case of the DLP in Z∗
p, such an integer x must exist since α is a primi-

tive element, and thus each element of the group G can be generated by repeated
application of the group operation on α .

It is important to realize that there are cyclic groups in which the DLP is not
difficult. Such groups cannot be used for a public-key cryptosystem since the DLP
is not a one-way function. Consider the following example.

Example 8.13. This time we consider the additive group of integers modulo a prime.
For instance, if we choose the prime p = 11, G = (Z11,+) is a finite cyclic group
with the primitive element α = 2. Here is how α generates the group:

i 1 2 3 4 5 6 7 8 9 10 11
iα 2 4 6 8 10 1 3 5 7 9 0

We try now to solve the DLP for the element β = 3, i.e., we have to compute the
integer 1 ≤ x ≤ 11 such that

x ·2 = 2+2+ . . .+2︸ ︷︷ ︸
x times

≡ 3 mod 11

Here is how an “attack” against this DLP works. Even though the group operation
is addition, we can express the relationship between α , β and the discrete logarithm
x in terms of multiplication:

x ·2 ≡ 3 mod 11.

In order to solve for x, we simply have to invert the primitive element α:

x ≡ 2−1 3 mod 11

8.3 The Discrete Logarithm Problem 219

Using, e.g., the extended Euclidean algorithm, we can compute 2−1 ≡ 6 mod 11
from which the discrete logarithm follows as:

x ≡ 2−1 3 ≡ 7 mod 11

The discrete logarithm can be verified by looking at the small table provided above.
We can generalize the above trick to any group (Zn,+) for arbitrary n and ele-

ments α,β ∈ Zn. Hence, we conclude that the generalized DLP is computationally
easy over Zn. The reason why the DLP can be solved here easily is that we have
mathematical operations which are not in the additive group, namely multiplication
and inversion.

⋄

After this counterexample we now list discrete logarithm problems that have been
proposed for use in cryptography:

1. The multiplicative group of the prime field Zp or a subgroup of it. For instance,
the classical DHKE uses this group, but also Elgamal encryption or the Digital
Signature Algorithm (DSA). These are the oldest and most widely used types of
discrete logarithm systems.

2. The cyclic group formed by an elliptic curve. Elliptic curve cryptosystems are
introduced in Chapter 9. They have become popular in practice over the last
decade.

3. The multiplicative group of a Galois field GF(2m) or a subgroup of it. These
groups can be used completely analogous to multiplicative groups of prime fields,
and schemes such as the DHKE can be realized with them. They are not as pop-
ular in practice because the attacks against them are somewhat more powerful
than those against the DLP in Zp. Hence DLPs over GF(2m) require somewhat
higher bit lengths for providing the same level of security than those over Zp.

4. Hyperelliptic curves or algebraic varieties, which can be viewed as generalization
as elliptic curves. They are currently rarely used in practice, but in particular
hyperelliptic curves have some advantages such as short operand lengths.

There have been proposals for other DLP-based cryptosystems over the years,
but none of them have really been of interest in practice. Often it was found that the
underlying DL problem was not difficult enough.

8.3.3 Attacks Against the Discrete Logarithm Problem

This section introduce methods for solving discrete logarithm problems. Readers
only interested in the constructive use of DL schemes can skip this section.

As we have seen, the security of many asymmetric primitives is based on the
difficulty of computing the DLP in cyclic groups, i.e., to compute x for a given α
and β in G such that

220 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

β = α ◦α ◦ . . .◦α︸ ︷︷ ︸
x times

= αx

holds. We still do not know the exact difficulty of computing the discrete logarithm
x in any given actual group. What we mean by this is that even though some at-
tacks are known, one does not know whether there are any better, more powerful
algorithms for solving the DLP. This situation is similar to the hardness of integer
factorization, which is the one-way function underlying RSA. Nobody really knows
what the best possible factorization method is. For the DLP some interesting gen-
eral results exist regarding its computational hardness. This section gives a brief
overview of algorithms for computing discrete logarithms which can be classified
into generic algorithms and nongeneric algorithms and which will be discussed in
a little more detail.

Generic Algorithms

Generic DL algorithms are methods which only use the group operation and no
other algebraic structure of the group under consideration. Since they do not exploit
special properties of the group, they work in any cyclic group. Generic algorithms
for the discrete logarithm problem can be subdivided into two classes. The first
class encompasses algorithms whose running time depends on the size of the cyclic
group, like the brute-force search, the baby-step giant-step algorithm and Pollard’s
rho method. The second class are algorithms whose running time depends on the
size of the prime factors of the group order, like the Pohlig–Hellman algorithm.

Brute-Force Search

A brute-force search is the most naı̈ve and computationally costly way for comput-
ing the discrete logarithm logα β . We simply compute powers of the generator α
successively until the result equals β :

α1 ?= β

α2 ?= β
...

αx ?= β

8.3 The Discrete Logarithm Problem 221

For a random logarithm x, we do expect to find the correct solution after checking
half of all possible x. This gives us a complexity of O(|G|) steps2, where |G| is the
cardinality of the group.

To avoid brute-force attacks on DL-based cryptosystems in practice, the cardi-
nality |G| of the underlying group must thus be sufficiently large. For instance, in
the case of the group Z∗

p, p prime, which is the basis for the DHKE, (p−1)/2 tests
are required on average to compute a discrete logarithm. Thus, |G| = p− 1 should
be at least in the order of 280 to make a brute-force search infeasible using today’s
computer technology. Of course, this consideration only holds if a brute-force attack
is the only feasible attack which is never the case. There exist much more powerful
algorithms to solve discrete logarithms as we will see below.

Shanks’ Baby-Step Giant-Step Method

Shanks’ algorithm is a time-memory tradeoff method, which reduces the time of
a brute-force search at the cost of extra storage. The idea is based on rewriting the
discrete logarithm x = logα β in a two-digit representation:

x = xg m+ xb for 0 ≤ xg,xb < m. (8.1)

The value m is chosen to be of the size of the square root of the group order, i.e.,
m = ⌈

√
|G|⌉. We can now write the discrete logarithm as β = αx = αxg m+xb which

leads to
β · (α−m)xg = αxb . (8.2)

The idea of the algorithm is to find a solution (xg,xb) for Eq. (8.2), from which the
discrete logarithm then follows directly according to Eq. (8.1). The core idea for the
algorithm is that Eq. (8.2) can be solved by searching for xg and xb separatedly, i.e.,
using a divide-and-conquer approach. In the first phase of the algorithm we compute
and store all values αxb , where 0 ≤ xb < m. This is the baby-step phase that requires
m ≈

√
|G| steps (group operations) and needs to store m ≈

√
|G| group elements.

In the giant-step phase, the algorithm checks for all xg in the range 0 ≤ xg < m
whether the following condition is fulfilled:

β · (α−m)xg ?= αxb

for some stored entry αxb that was computed during the baby-step phase. In case of
a match, i.e., β · (α−m)xg,0 = αxb,0 for some pair (xg,0,xb,0), the discrete logarithm is
given by

x = xg,0 m+ xb,0.

The baby-step giant-step method requires O(
√
|G|) computational steps and an

equal amount of memory. In a group of order 280, an attacker would only need

2 We use the popular “big-Oh” notation here. A complexity function f (x) has big-Oh notation
O(g(x)) if f (x) ≤ c ·g(x) for some constant c and for input values x greater than some value x0.

222 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

approximately 240 =
√

280 computations and memory locations, which is easily
achievable with today‘s PCs and hard disks. Thus, in order to obtain an attack com-
plexity of 280, a group must have a cardinality of at least |G| ≥ 2160. In the case of
groups G = Z∗

p, the prime p should thus have at least a length of 160 bit. However,
as we see below, there are more powerful attacks against DLPs in Z∗

p which forces
even larger bit lengths of p.

Pollard’s Rho Method

Pollard’s rho method has the same expected run time O(
√
|G|) as the baby-step

giant-step algorithm but only negligible space requirements. The method is a prob-
abilistic algorithm which is based on the birthday paradox (cf. Section 11.2.3). We
will only sketch the algorithm here. The basic idea is to pseudorandomly generate
group elements of the form α i ·β j. For every element we keep track of the values i
and j. We continue until we obtain a collision of two elements, i.e., until we have:

α i1 ·β j1 = α i2 ·β j2 . (8.3)

If we substitute β = αx and compare the exponents on both sides of the equation,
the collision leads to the relation i1 + x j1 ≡ i2 + x j2 mod |G|. (Note that we are in
a cyclic group with |G| elements and have to take the exponent modulo |G|.) From
here the discrete logarithm can easily computed as:

x ≡ i2 − i1
j1 − j2

mod |G|

An important detail, which we omit here, is the exact way to find the collision (8.3).
In any case, the pseudorandom generation of the elements is a random walk through
the group. This can be illustrated by the shape of the Greek letter rho, hence the
name of this attack.

Pollard’s rho method is of great practical importance because it is currently the
best known algorithm for computing discrete logarithms in elliptic curve groups.
Since the method has an attack complexity of O(

√
|G|) computations, elliptic curve

groups should have a size of at least 2160. In fact, elliptic curve cryptosystems with
160-bit operands are very popular in practice.

There are still much more powerful attacks known for the DLP in Z∗
p, as we will

see below.

Pohlig–Hellman Algorithm

The Pohlig–Hellman method is an algorithm which is based on the Chinese Re-
mainder Theorem (not introduced in this book); it exploits a possible factorization
of the order of a group. It is typically not used by itself but in conjunction with any
of the other DLP attack algorithms in this section. Let

8.3 The Discrete Logarithm Problem 223

|G| = pe1
1 · pe2

2 · . . . · pel
l

be the prime factorization of the group order |G|. Again, we attempt to compute
a discrete logarithm x = logα β in G. This is also a divide-and-conquer algorithm.
The basic idea is that rather than dealing with the large group G, one computes
smaller discrete logarithms xi ≡ x mod pei

i in the subgroups of order pei
i . The desired

discrete logarithm x can then be computed from all xi, i = 1, . . . , l, by using the
Chinese Remainder Theorem. Each individual small DLP xi can be computed using
Pollard’s rho method or the baby-step giant-step algorithm.

The run time of the algorithm clearly depends on the prime factors of the group
order. To prevent the attack, the group order must have its largest prime factor in the
range of 2160. An important practical consequence of the Pohlig–Hellman algorithm
is that one needs to know the prime factorization of the group order. Especially in
the case of elliptic curve cryptosystems, computing the order of the cyclic group is
not always easy.

Nongeneric Algorithms: The Index-Calculus Method

All algorithms introduced so far are completely independent of the group being
attacked, i.e., they work for discrete logarithms defined over any cyclic group. Non-
generic algorithms efficiently exploit special properties, i.e., the inherent structure,
of certain groups. This can lead to much more powerful DL algorithms. The most
important nongeneric algorithm is the index-calculus method.

Both the baby-step giant-step algorithm and Pollard’s rho method have a run time
which is exponential in the bit length of the group order, namely of about 2n/2 steps,
where n is the bit length of |G|. This greatly favors the crypto designer over the
cryptanalyst. For instance, increasing the group order by a mere 20 bit increases the
attack effort by a factor of 1024 = 210. This is a major reason why elliptic curves
have better long-term security behavior than RSA or cryptosystems based on the
DLP in Z∗

p. The question is whether there are more powerful algorithms for DLPs
in certain specific groups. The answer is yes.

The index-calculus method is a very efficient algorithm for computing discrete
logarithms in the cyclic groups Z∗

p and GF(2m)∗. It has a subexponential running
time. We will not introduce the method here but just provide a very brief description.
The index-calculus method depends on the property that a significant fraction of
elements of G can be efficiently expressed as products of elements of a small subset
of G. For the group Z∗

p this means that many elements should be expressable as a
product of small primes. This property is satisfied by the groups Z∗

p and GF(2m)∗.
However, one has not found a way to do the same for elliptic curve groups. The
index calculus is so powerful that in order to provide a security of 80 bit, i.e., an
attacker has to perform 280 steps, the prime p of a DLP in Z∗

p should be at least
1024 bit long. Table 8.3 gives an overview on the DLP records achieved since the
early 1990s. The index-calculus method is somewhat more powerful for solving
the DLP in GF(2m)∗. Hence the bit lengths have to be chosen somewhat longer to

224 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

achieve the same level of security. For that reason, DLP schems in GF(2m)∗ are not
as widely used in practice.

Table 8.3 Summary of records for computing discrete logarithms in Z∗
p

Decimal digits Bit length Date
58 193 1991
65 216 1996
85 282 1998
100 332 1999
120 399 2001
135 448 2006
160 532 2007

