Chapter 9
Elliptic Curve Cryptosystems

http://www.crypto-textbook.com/

Understanding Cryptography:
A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl
1st ed. 2010 Edition

Elliptic Curve Cryptography (ECC) is the newest member of the three families of
established public-key algorithms of practical relevance introduced in Sect. 6.2.3.
However, ECC has been around since the mid-1980s.

ECC provides the same level of security as RSA or discrete logarithm systems
with considerably shorter operands (approximately 160-256 bit vs. 1024-3072 bit).
ECC is based on the generalized discrete logarithm problem, and thus DL-protocols
such as the Diffie-Hellman key exchange can also be realized using elliptic curves.
In many cases, ECC has performance advantages (fewer computations) and band-
width advantages (shorter signatures and keys) over RSA and Discrete Logarithm
(DL) schemes. However, RSA operations which involve short public keys as intro-
duced in Sect. 7.5.1 are still much faster than ECC operations.

The mathematics of elliptic curves are considerably more involved than those
of RSA and DL schemes. Some topics, e.g., counting points on elliptic curves, go
far beyond the scope of this book. Thus, the focus of this chapter is to explain the
basics of ECC in a clear fashion without too much mathematical overhead, so that
the reader gains an understanding of the most important functions of cryptosystems
based on elliptic curves.

In this chapter, you will learn:

The basic pros and cons of ECC vs. RSA and DL schemes.

What an elliptic curve is and how to compute with it.

How to build a DL problem with an elliptic curve.

Protocols that can be realized with elliptic curves.

Current security estimations of cryptosystems based on elliptic curves.

9.1 How to Compute with Elliptic Curves

We start by giving a short introduction to the mathematical concept of elliptic
curves, independent of their cryptographic applications. ECC is based on the gener-
alized discrete logarithm problem. Hence, what we try to do first is to find a cyclic

C. Paar, J. Pelzl, Understanding Cryptography, 239
DOI 10.1007/978-3-642-04101-3_9, (© Springer-Verlag Berlin Heidelberg 2010


http://www.crypto-textbook.com/


Understanding Cryptography: 
A Textbook for Students and Practitioners 


by Christof Paar and Jan Pelzl 
1st ed. 2010 Edition



240 9 Elliptic Curve Cryptosystems

group on which we can build our cryptosystem. Of course, the mere existence of a
cyclic group is not sufficient. The DL problem in this group must also be computa-
tionally hard, which means that it must have good one-way properties.

We start by considering certain polynomials (e.g., functions with sums of expo-
nents of x and y), and we plot them over the real numbers.

Example 9.1. Let’s look at the polynomial equation x> + y> = r? over the real num-

bers R. If we plot all the pairs (x,y) which fulfill this equation in a coordinate sys-

y

v
N

Fig. 9.1 Plot of all points (x,y) which fulfill the equation x> 4 y*> = r? over R

tem, we obtain a circle as shown in Fig. 9.1.
o

We now look at other polynomial equations over the real numbers.

Example 9.2. A slight generalization of the circle equation is to introduce coeffi-
cients to the two terms x* and y2, i.e., we look at the set of solutions to the equation
a-x>+b- y2 = ¢ over the real numbers. It turns out that we obtain an ellipse, as

/ﬁ
N

—
-

Fig. 9.2 Plot of all points (x,y) which fulfill the equation a-x*> +5b-y* = c over R

shown in Figure 9.2.
o

9.1.1 Definition of Elliptic Curves

From the two examples above, we conclude that we can form certain types of curves
from polynomial equations. By “curves”, we mean the set of points (x,y) which are



9.1 How to Compute with Elliptic Curves 241

solutions of the equations. For example, the point (x = r,y = 0) fulfills the equation
of a circle and is, thus, in the set. The point (x = r/2,y = r/2) is not a solution to the
polynomial X2 +y2 = r? and is, thus, not a set member. An elliptic curve is a special
type of polynomial equation. For cryptographic use, we need to consider the curve
not over the real numbers but over a finite field. The most popular choice is prime
fields GF (p) (cf. Sect. 4.2), where all arithmetic is performed modulo a prime p.

Definition 9.1.1 Elliptic Curve

The elliptic curve over Zp, p > 3, is the set of all pairs (x,y) € Z,,
which fulfill
yV=x"+a-x+bmod p 9.1)

together with an imaginary point of infinity &, where
a,beZ,

and the condition 4-a’+27-b* # 0 mod p.

The definition of elliptic curve requires that the curve is nonsingular. Geometri-
cally speaking, this means that the plot has no self-intersections or vertices, which
is achieved if the discriminant of the curve —16(4a* +27b?) is nonzero.

For cryptographic use we are interested in studying the curve over a prime field
as in the definition. However, if we plot such an elliptic curve over Z,, we do not get
anything remotely resembling a curve. However, nothing prevents us from taking an
elliptic curve equation and plotting it over the set of real numbers.

Example 9.3. In Figure 9.3 the elliptic curve y*> = x> — 3x+ 3 is shown over the real
numbers.

-
_

Fig. 9.3 y> = x> —3x+3 over R



242 9 Elliptic Curve Cryptosystems

We notice several things from this elliptic curve plot.! First, the elliptic curve
is symmetric with respect to the x-axis. This follows directly from the fact that for

all values x; which are on the elliptic curve, both y; = 4/ x? +a-x;+ b and y§ =

—4 /xi3 +a-x; + b are solutions. Second, there is one intersection with the x-axis.

This follows from the fact that it is a cubic equation if we solve for y = 0 which has
one real solution (the intersection with the x-axis) and two complex solutions (which
do not show up in the plot). There are also elliptic curves with three intersections
with the x-axis.

We now return to our original goal of finding a curve with a large cyclic group,
which is needed for constructing a discrete logarithm problem. The first task for
finding a group is done, namely identifying a set of elements. In the elliptic curve
case, the group elements are the points that fulfill Eq. (9.1). The next question at
hand is: How do we define a group operation with those points? Of course, we have
to make sure that the group laws from Definition 4.3.1 in Sect. 4.2 hold for the
operation.

9.1.2 Group Operations on Elliptic Curves

Let’s denote the group operation with the addition symbol? “+”. “Addition” means
that given two points and their coordinates, say P = (x1,y;) and Q = (x2,y2), we
have to compute the coordinates of a third point R such that:

P+Q=R
(x1,31) + (x2,32) = (x3,¥3)

As we will see below, it turns out that this addition operation looks quite arbi-
trary. Luckily, there is a nice geometric interpretation of the addition operation if we
consider a curve defined over the real numbers. For this geometric interpretation,
we have to distinguish two cases: the addition of two distinct points (named point
addition) and the addition of one point to itself (named point doubling).

Point Addition P+ Q This is the case where we compute R = P+ Q and P #
Q. The construction works as follows: Draw a line through P and Q and obtain a
third point of intersection between the elliptic curve and the line. Mirror this third
intersection point along the x-axis. This mirrored point is, by definition, the point R.
Figure 9.4 shows the point addition on an elliptic curve over the real numbers.

Point Doubling P+ P This is the case where we compute P+ Q but P = Q. Hence,
we can write R = P+ P = 2P. We need a slightly different construction here. We

! Note that elliptic curves are not ellipses. They play a role in determining the circumference of
ellipses, hence the name.

% Note that the choice of naming the operation “addition” is completely arbitrary; we could have
also called it multiplication.



9.1 How to Compute with Elliptic Curves 243
y

P+Q

0

Fig. 9.4 Point addition on an elliptic curve over the real numbers

draw the tangent line through P and obtain a second point of intersection between
this line and the elliptic curve. We mirror the point of the second intersection along
the x-axis. This mirrored point is the result R of the doubling. Figure 9.5 shows the

2P

Fig. 9.5 Point doubling on an elliptic curve over the real numbers

doubling of a point on an elliptic curve over the real numbers.

You might wonder why the group operations have such an arbitrary looking form.
Historically, this tangent-and-chord method was used to construct a third point if
two points were already known, while only using the four standard algebraic op-
erations add, subtract, multiply and divide. It turns out that if points on the elliptic
curve are added in this very way, the set of points also fulfill most conditions neces-
sary for a group, that is, closure, associativity, existence of an identity element and
existence of an inverse.

Of course, in a cryptosystem we cannot perform geometric constructions. How-
ever, by applying simple coordinate geometry, we can express both of the geomet-



244 9 Elliptic Curve Cryptosystems

ric constructions from above through analytic expressions, i.e., formulae. As stated
above, these formulae only involve the four basic algebraic operations. These op-
erations can be performed in any field, not only over the field of the real numbers
(cf. Sect. 4.2). In particular, we can take the curve equation from above, but we now
consider it over prime fields GF(p) rather than over the real numbers. This yields
the following analytical expressions for the group operation.

Elliptic Curve Point Addition and Point Doubling

X3 = s2—x1 —xp mod p

y3 = s(x; —x3) —y; mod p
where

X3 —X]
2

{ 2 mod p ;if P +# Q (point addition)
S =
2y

Note that the parameter s is the slope of the line through P and Q in the case of
point addition, or the slope of the tangent through P in the case of point doubling.
Even though we made major headway towards the establishment of a finite group,
we are not there yet. One thing that is still missing is an identity (or neutral) element
O such that:
P+0 =P

for all points P on the elliptic curve. It turns out that there isn’t any point (x,y) that
fulfills the condition. Instead we define an abstract point at infinity as the neutral
element &' This point at infinity can be visualized as a point that is located towards
“plus” infinity along the y-axis or towards “minus” infinity along the y-axis.
According the group definition, we can now also define the inverse —P of any
group element P as:
P+(—P)=0.

The question is how do we find —P? If we apply the tangent-and-chord method
from above, it turns out that the inverse of the point P = (x,,y),) is the point —P =
(xp,—Yp), i.e., the point that is reflected along the x-axis. Figure 9.6 shows the point
P together with its inverse. Note that finding the inverse of a point P = (x,y,) is
now trivial. We simply take the negative of its y coordinate. In the case of elliptic
curves over a prime field GF (p) (the most interesting case in cryptography), this is
easily achieved since —y, = p —y, mod p, hence

—P= (xpap_yp)-

Now that we have defined all group properties for elliptic curves, we now look at
an example for the group operation.

Example 9.4. We consider a curve over the small field Z7:



9.2 Building a Discrete Logarithm Problem with Elliptic Curves 245

[
\

Fig. 9.6 The inverse of a point P on an elliptic curve

E :y2 =x>+2x+2mod 17.
We want to double the point P = (5,1).

2P =P+P=(51)+(51) = (x3,y3)
o 3x%+a
2y
X =s—x1—x=132-5-5=159=6mod 17
yv3=s(x1—x3)—y;=13(5—-6)—1=—-14=3 mod 17
2P = (5,1)+(5,1) = (6,3)

=2-1)713-524+2)=2"1.9=9.9= 13 mod 17

For illustrative purposes we check whether the result 2P = (6,3) is actually a point
on the curve by inserting the coordinates into the curve equation:

V¥ =x4+2-x+2mod 17
32 =6+2-6+2mod 17
=230=9mod 17

9.2 Building a Discrete Logarithm Problem with Elliptic Curves

What we have done so far is to establish the group operations (point addition and
doubling), we have provided an identity element, and we have shown a way of
finding the inverse for any point on the curve. Thus, we now have all necessary
requirements in place to motivate the following theorem:



246 9 Elliptic Curve Cryptosystems

Theorem 9.2.1 The points on an elliptic curve together with O
have cyclic subgroups. Under certain conditions all points on an
elliptic curve form a cyclic group.

Please note that we have not proved the theorem. This theorem is extremely use-
ful because we have a good understanding of the properties of cyclic groups. In
particular, we know that by definition a primitive element must exist such that its
powers generate the entire group. Moreover, we know quite well how to build cryp-
tosystems from cyclic groups. Here is an example for the cyclic group of an elliptic
curve.

Example 9.5. We want to find all points on the curve:
E :y2 =x’+2-x+2mod 17.

It happens that all points on the curve form a cyclic group and that the order is
#E = 19. For this specific curve the group order is a prime and, according to Theo-
rem 8.2.4, every element is primitive.

As in the previous example we start with the primitive element P = (5,1). We
compute now all “powers” of P. More precisely, since the group operation is addi-
tion, we compute P,2P, ..., (#E) P. Here is a list of the elements that we obtain:

2P (5 1) 5,1)=(6,3) 11P = (13,10)
3P =2P+P=(10,6) 12P = (0,11)
4p = (3,1) 13P = (16,4)
5P = (9,16) 14P = (9, )
6P = (16,13) 15P = (3,16)
7P = (0,6) 16P = (10,11)
8P = (13,7) 17P = (6,14)
9P = (7,6) 18P = (5,16)
10P = (7,11) 19P = ¢

From now on, the cyclic structure becomes visible since:

20P=19P+P=0+P=P
21P = 2P

It is also instructive to look at the last computation above, which yielded:
1I8P+P=20.

This means that P = (5, 1) is the inverse of 18P = (5,16), and vice versa. This is
easy to verify. We have to check whether the two x coordinates are identical and
that the two y coordinates are each other’s additive inverse modulo 17. The first



9.2 Building a Discrete Logarithm Problem with Elliptic Curves 247
condition obviously hold and the second one too, since
—1=16 mod 17.

<

To set up DL cryptosystems it is important to know the order of the group. Even
though knowing the exact number of points on a curve is an elaborate task, we know
the approximate number due to Hasse’s theorem.

Theorem 9.2.2 Hasse’s theorem
Given an elliptic curve E modulo p, the number of points on the
curve is denoted by #E and is bounded by:

p+1-=2/p<#E < p+1+2,/p.

Hasse’s theorem, which is also known as Hasse’s bound, states that the number of
points is roughly in the range of the prime p. This has major practical implications.
For instance, if we need an elliptic curve with 2'%° elements, we have to use a prime
of length of about 160 bit.

Let’s now turn our attention to the details of setting up the discrete logarithm
problem. For this, we can strictly proceed as described in Chapter 8.

Definition 9.2.1 Elliptic Curved Discrete Logarithm Problem
(ECDLP)

Given is an elliptic curve E. We consider a primitive element P
and another element T. The DL problem is finding the integer d,
where 1 < d < #E, such that:

PtPit...oP=dpP=T. 9.2)
N 7

d times

In cryptosystems, d is the private key which is an integer, while the public key
T is a point on the curve with coordinates T = (x7,yr). In contrast, in the case of
the DL problem in Z, both keys were integers. The operation in Eq. (9.2) is called
point multiplication, since we can formally write T = d P. This terminology can be
misleading, however, since we cannot directly multiply the integer d with a curve
point P. Instead, d P is merely a convenient notation for the repeated application of
the group operation in Equation (9.2).% Let’s now look at an example for an ECDLP.

Example 9.6. We perform a point multiplication on the curve y* = x> +2x+2 mod
17 that was also used in the previous example. We want to compute

3 Note that the symbol “+” was chosen arbitrarily to denote the group operation. If we had chosen
a multiplicative notation instead, the ECDLP would have had the form P4 = T, which would have
been more consistent with the conventional DL problem in Z,.



248 9 Elliptic Curve Cryptosystems
I3P=P+P+...+P
where P = (5, 1). In this case, we can simply use the table that was compiled earlier:
13P = (16,4).
o

Point multiplication is analog to exponentiation in multiplicative groups. In or-
der to do it efficiently, we can directly adopt the square-and-multiply algorithm.
The only difference is that squaring becomes doubling and multiplication becomes
addition of P. Here is the algorithm:

Double-and-Add Algorithm for Point Multiplication
Input: elliptic curve E together with an elliptic curve point P
ascalard =Y!_,d;2' withd; €0,1 and d; = 1

Output: 7 =dP

Initialization:

T=P

Algorithm:

1 FOR i=1t—1DOWNTO 0

1.1 T=T+4T modn
IFd; =1

1.2 T=T+4Pmodn

2 RETURN (T)

For a random scalar of length of 7 + 1 bit, the algorithm requires on average
1.5¢ point doubles and additions. Verbally expressed, the algorithm scans the bit
representation of the scalar d from left to right. It performs a doubling in every
iteration, and only if the current bit has the value 1 does it perform an addition of P.
Let’s look at an example.

Example 9.7. We consider the scalar multiplication 26 P, which has the following
binary representation:

26P = (11010,) P = (dsdsdadydo)2 P.

The algorithm scans the scalar bits starting on the left with ds and ending with the
rightmost bit dj.



9.3 Diffie-Hellman Key Exchange with Elliptic Curves 249

Step

#) P=1,P inital setting, bit processed: ds = 1
#la P+P=2P=10,P DOUBLE, bit processed: d3

#1b 2P+P=3P=10,P+1,P=11,P ADD, since d3 = 1

#2a 3P+3P=6P=2(11,P) =110, P DOUBLE, bit processed: d»

#2b no ADD, since dp =0

#3a 6P+ 6P =12P =2(110, P) = 1100, P DOUBLE, bit processed: d

#3b 12P+P=13P=1100,P+ 1, P =1101, P ADD, since d; =1

#4a 13P+13P =26P =2(1101,P) = 11010, P DOUBLE, bit processed: dy
#4b no ADD, since dy =0

It is instructive to observe how the binary representation of the exponent evolves.
We see that doubling results in a left shift of the scalar, with a O put in the rightmost
position. By performing addition with P, a 1 is inserted into the rightmost posi-
tion of the scalar. Compare how the highlighted exponents change from iteration to
iteration.

o

If we go back to elliptic curves over the real numbers, there is a nice geometric
interpretation for the ECDLP: given a starting point P, we compute 2P, 3P, ...,
dP =T, effectively hopping back and forth on the elliptic curve. We then publish
the starting point P (a public parameter) and the final point 7 (the public key). In
order to break the cryptosystem, an attacker has to figure out how often we “jumped”
on the elliptic curve. The number of hops is the secret d, the private key.

9.3 Diffie—-Hellman Key Exchange with Elliptic Curves

In complete analogy to the conventional Diffie-Hellman key exchange (DHKE) in-
troduced in Sect. 8.1, we can now realize a key exchange using elliptic curves. This
is referred to as elliptic curve Diffie—Hellman key exchange, or ECDH. First we
have to agree on domain parameters, that is, a suitable elliptic curve over which we
can work and a primitive element on this curve.



250 9 Elliptic Curve Cryptosystems

ECDH Domain Parameters

1. Choose a prime p and the elliptic curve
E :y2 =x’+a-x+b mod p

2. Choose a primitive element P = (xp,yp)
The prime p, the curve given by its coefficients a, b, and the primitive ele-
ment P are the domain parameters.

Note that in practice finding a suitable elliptic curve is a relatively difficult task.
The curves have to show certain properties in order to be secure. More about this
is said below. The actual key exchange is done the same way it was done for the
conventional Diffie-Hellman protocol.

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Alice Bob
choose kpa =a € {2,3,... #E — 1} choose kpp =b € {2,3,... #E — 1}
compute kpupa =aP =A = (xa,ya) compute kg =bP =B = (xp,yp)

A
- < @

B

- - @00

compute aB = Typ compute bA = Typ
Joint secret between Alice and Bob: Txg = (xaB,y4B)-

The correctness of the protocol is easy to prove.

Proof. Alice computes
aB=a(bP)

while Bob computes
bA=b(aP).

Since point addition is associative (remember that associativity is one of the group
properties), both parties compute the same result, namely the point Ty = abP. O

As can be seen in the protocol, Alice and Bob choose the private keys a and
b, respectively, which are two large integers. With the private keys both generate
their respective public keys A and B, which are points on the curve. The public
keys are computed by point multiplication. The two parties exchange these public
parameters with each other. The joint secret Typ is then computed by both Alice
and Bob by performing a second point multiplication involving the public key they
received and their own secret parameter. The joint secret T4p can be used to derive
a session key, e.g., as input for the AES algorithm. Note that the two coordinates
(xaB,yap) are not independent of each other: Given x4, the other coordinate can be
computed by simply inserting the x value in the elliptic curve equation. Thus, only
one of the two coordinates should be used for the derivation of a session key. Let’s
look at an example with small numbers:



9.4 Security 251

Example 9.8. We consider the ECDH with the following domain parameters. The
elliptic curve is y> = x> 4+ 2x+2 mod 17, which forms a cyclic group of order #E =
19. The base point is P = (5, 1). The protocol proceeds as follows:

Alice Bob
choose a = kpa =3 choose b = kp,.p = 10
A =kpupa =3P =(10,6) B = kpupp =10P = (7,11)

Tag =aB=3(7,11) = (13,10) Tag = bA =10(10,6) = (13,10)

The two scalar multiplications that each Alice and Bob perform require the Double-
and-Add algorithm.
o

One of the coordinates of the joint secret T4p can now be used as session key. In
practice, often the x-coordinate is hashed and then used as a symmetric key. Typ-
ically, not all bits are needed. For instance, in a 160-bit ECC scheme, hashing the
x-coordinate with SHA-1 results in a 160-bit output of which only 128 would be
used as an AES key.

Please note that elliptic curves are not restricted to the DHKE. In fact, almost all
other discrete logarithm protocols, in particular digital signatures and encryption,
e.g., variants of Elgamal, can also be realized. The widely used elliptic curve digital
signature algorithms (ECDSA) will be introduced in Sect. 10.5.1.

9.4 Security

The reason we use elliptic curves is that the ECDLP has very good one-way char-
acteristics. If an attacker Oscar wants to break the ECDH, he has the following
information: E, p, P, A, and B. He wants to compute the joint secret between Alice
and Bob Typ = a-b- P. This is called the elliptic curve Diffie-Hellman problem
(ECDHP). There appears to be only one way to compute the ECDHP, namely to
solve either of the discrete logarithm problems:

a=1logpA

or
b=logpB

If the elliptic curve is chosen with care, the best known attacks against the
ECDLP are considerably weaker than the best algorithms for solving the DL prob-
lem modulo p, and the best factoring algorithms which are used for RSA attacks.
In particular, the index-calculus algorithms, which are powerful attacks against the
DLP modulo p, are not applicable against elliptic curves. For carefully selected el-
liptic curves, the only remaining attacks are generic DL algorithms, that is Shanks’
baby-step giant-step method and Pollard’s rho method, which were described in
Sect. 8.3.3. Since the number of steps required for such an attack is roughly equal



252 9 Elliptic Curve Cryptosystems

to the square root of the group cardinality, a group order of at least 2'%° should be
used. According to Hasse’s theorem, this requires that the prime p used for the el-
liptic curve must be roughly 160-bit long. If we attack such a group with generic
algorithms, we need around v/2160 = 280 steps. A security level of 80 bit provides
medium-term security. In practice, elliptic curve bit lengths up to 256 bit are com-
monly used, which provide security levels of up to 128 bit.

It should be stressed that this security is only achieved if cryptographically strong
elliptic curves are used. There are several families of curves that possess crypto-
graphic weaknesses, e.g., supersingular curves. They are relatively easy to spot,
however. In practice, often standardized curves such as ones proposed by the Na-
tional Institute of Standards and Technology (NIST) are being used.

9.5 Implementation in Software and Hardware

Before using ECC, a curve with good cryptographic properties needs to be identi-
fied. In practice, a core requirement is that the cyclic group (or subgroup) formed
by the curve points has prime order. Moreover, certain mathematical properties that
lead to cryptographic weaknesses must be ruled out. Since assuring all these prop-
erties is a nontrivial and computationally demanding task, often standardized curves
are used in practice.

When implementing elliptic curves it is useful to view an ECC scheme as a struc-
ture with four layers. On the bottom layer modular arithmetic, i.e., arithmetic in the
prime field GF(p), is performed. We need all four field operations: addition, sub-
traction, multiplication and inversion. On the next layer, the two group operations,
point doubling and point addition, are realized. They make use of the arithmetic pro-
vided in the bottom layer. On the third layer, scalar multiplication is realized, which
uses the group operations of the previous layer. The top layer implements the actual
protocol, e.g., ECDH or ECDSA. It is important to note that two entirely different
finite algebraic structures are involved in an elliptic curve cryptosystem. There is
a finite field GF (p) over which the curve is defined, and there is the cyclic group
which is formed by the points on the curve.

In software, a highly optimized 256-bit ECC implementation on a 3-GHz, 64-bit
CPU can take approximately 2 ms for one point multiplication. Slower through-
puts due to smaller microprocessors or less optimized algorithms are common with
performances in the range of 10 ms. For high-performance applications, e.g., for
Internet servers that have to perform a large number of elliptic curve signatures per
second, hardware implementations are desirable. The fastest implementations can
compute a point multiplication in the range of 40 us, while speeds of several 100
Us are more common.

On the other side of the performance spectrum, ECC is the most attractive public-
key algorithm for lightweight applications such as RFID tags. Highly compact ECC
engines are possible which need as little as 10,000 gate equivalences and run at a
speed of several tens of milliseconds. Even though ECC engines are much larger



9.6 Discussion and Further Reading 253

than implementations of symmetric ciphers such as 3DES, they are considerably
smaller than RSA implementations.

The computational complexity of ECC is cubic in the bit length of the prime
used. This is due to the fact that modular multiplication, which is the main operation
on the bottom layer, is quadratic in the bit length, and scalar multiplication (i.e.,
with the Double-and-Add algorithm) contributes another linear dimension, so that
we have, in total, a cubic complexity. This implies that doubling the bit length of
an ECC implementation results in performance degradation by a factor of roughly
23 = 8. RSA and DL systems show the same cubic runtime behavior. The advantage
of ECC over the other two popular public-key families is that the parameters have to
be increased much more slowly to enhance the security level. For instance, doubling
the effort of an attacker for a given ECC system requires an increase in the length
of the parameter by 2 bits, whereas RSA or DL schemes require an increase of 20—
30 bits. This behavior is due to the fact that only generic attacks (cf. Sect. 8.3.3)
are known ECC cryptosystems, whereas more powerful algorithms are available for
attacking RSA and DL schemes.

9.6 Discussion and Further Reading

History and General Remarks ECC was independently invented in 1987 by Neal
Koblitz and in 1986 by Victor Miller. During the 1990s there was much speculation
about the security and practicality of ECC, especially if compared to RSA. After a
period of intensive research, they appear nowadays very secure, just like RSA and
DL schemes. An important step for building confidence in ECC was the issuing of
two ANSI banking standards for elliptic curve digital signature and key establish-
ment in 1999 and 2001, respectively [6, 7]. Interestingly, in Suite B—a collection
of crypto algorithms selected by the NSA for use in US government systems—only
ECC schemes are allowed as asymmetric algorithms [130]. Elliptic curves are also
widely used in commercial standards such as IPsec or Transport Layer Security
(TLS).

At the time of writing, there still exist far more fielded RSA and DL applications
than elliptic curve ones. This is mainly due to historical reasons and due to the quite
complex patent situation of some ECC variants. Nevertheless, in many new applica-
tions with security needs, especially in embedded systems such as mobile devices,
ECC is often the preferred public-key scheme. For instance, ECC is used in the most
popular business handheld devices. Most likely, ECC will become more widespread
in the years to come. Reference [100] describes the historical development of ECC
with respect to scientific and commercial aspects, and makes excellent reading.

For readers interested in a deeper understanding of ECC, the books [25, 24, 90,
44] are recommended. The overview article [103], even though a bit dated now,
provides a good state-of-the-art summary as of the year 2000. For more recent de-
velopments, the annual Workshop on Elliptic Curve Cryptography (ECC) is recom-
mended as an excellent resource [166]. The workshop includes both theoretical and



254 9 Elliptic Curve Cryptosystems

applied topics related to ECC and related crypto schemes. There is also a rich liter-
ature that deals with the mathematics of elliptic curves [154, 101, 155], regardless
of their use in cryptography.

Implementation and Variants In the first few years after the invention of ECC,
these algorithms were believed to be computationally more complex than existing
public-key schemes, especially RSA. This assumption is somewhat ironic in hind-
sight, given that ECC tends to be often faster than most other public-key schemes.
During the 1990s, fast implementation techniques for ECC was intensively re-
searched, which resulted in considerable performance improvements.

In this chapter, elliptic curves over prime fields GF (p) were introduced. These
are currently in practice somewhat more widely used than over other finite fields, but
curves over binary Galois fields GF (2™) are also popular. For efficient implemen-
tations, improvements are possible at the finite field arithmetic layer, at the group
operation layer and at the point multiplication layer. There is a wealth of techniques
and in the following is a summary of the most common acceleration techniques in
practice. For curves over GF (p), generalized Mersenne primes are often used at the
arithmetic level. These are primes such as p = 2192 —2%% — |, Their major advantage
is that modulo reduction is extremely simple. If general primes are used, methods
similar to those described in Sect. 7.10 are applicable. With respect to ECC over
fields GF (2™), efficient arithmetic algorithms are described in [90]. On the group
operation layer, several optimizations are possible. A popular one is to switch from
the affine coordinates that were introduced here to projective coordinates, in which
each point is represented as a triple (x,y,z). Their advantage is that no inversion
is required within the group operation. The number of multiplications increases,
however. On the next layer, fast scalar multiplication techniques are applicable. Im-
proved versions of the Double-and-Add algorithm which make use of the fact that
adding or subtracting a point come at almost identical costs are commonly being
applied. An excellent compilation of efficient computation techniques for ECC is
the book [90].

A special type of elliptic curve that allows for particularly fast point multiplica-
tion is the Koblitz curve [158]. These are curves over GF (2™) where the coefficients
have the values O or 1. There have also been numerous other suggestions for ellip-
tic curves with good implementation properties. One such proposal involves elliptic
curves over optimum extension fields, i.e., fields of the form GF (p™), p > 2 [10].

As mentioned in Sect. 9.5, standardized curves are often being used in practice.
A widely used set of curves is provided in the FIPS Standard [126, Appendix D].
Alternatives are curves specified by the ECC Brainpool consortium or the Standards
for Efficient Cryptography Group (SECG) [34, 9] .

Elliptic curves also allow for many variants and generalization. They are a special
case of hyperelliptic curves, which can also be used to build discrete logarithm cryp-
tosystems [44]. A summary of implementation techniques for hyperelliptic curves is
given in [175]. A completely different type of public-key scheme which also makes
use of elliptic curves is identity-based cryptosystems [30], which have drawn much
attention over the last few years.



9.7 Lessons Learned 255

9.7 Lessons Learned

m Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem.
It requires arithmetic modulo a prime or in a Galois field GF (2™).

m ECC can be used for key exchange, for digital signatures and for encryption.

m ECC provides the same level of security as RSA or discrete logarithm sys-
tems over Zj, with considerably shorter operands (approximately 160-256 bit
vs. 1024-3072 bit), which results in shorter ciphertexts and signatures.

m In many cases ECC has performance advantages over other public-key algo-
rithms. However, signature verification with short RSA keys is still considerably
faster than ECC.

m ECC is slowly gaining popularity in applications, compared to other public-key
schemes, i.e., many new applications, especially on embedded platforms, make
use of elliptic curve cryptography.



