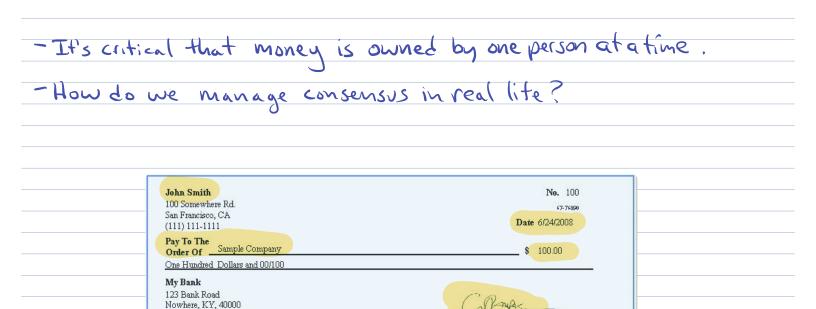
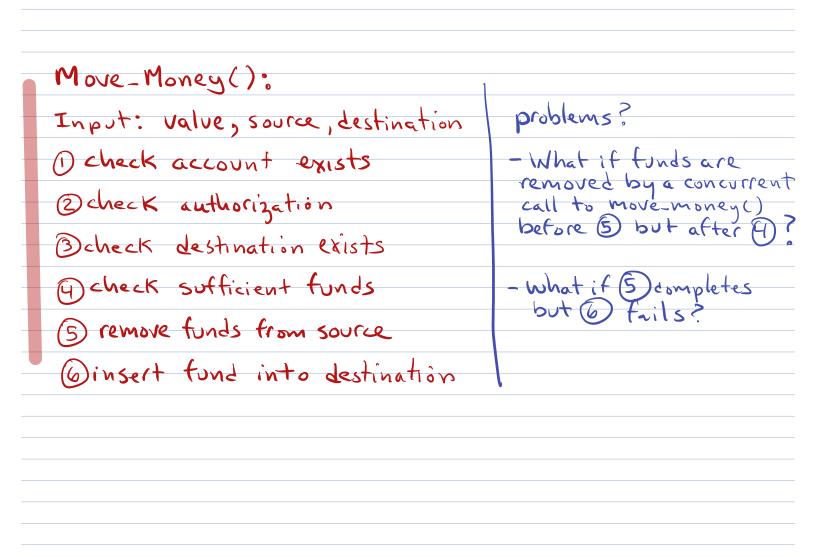
2

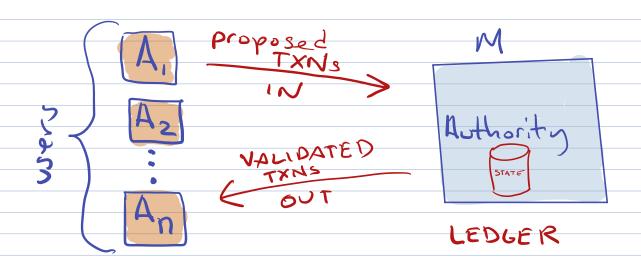
Secure Distributed Systems CompSci 661/461


	N			Vi	1		
_	Н	^	15	-\/ i	\wedge	P	\triangle
	Ц	, ,	1	V	U		U

©2018–2019 Brian Levine All rights reserved. Do not distribute or repost.


- Nakamoto's blockchain consensus algorithm
- consensus
- Coins
- -addresses
- transactions
- Mining
- vocabulary
- Pros and Cons

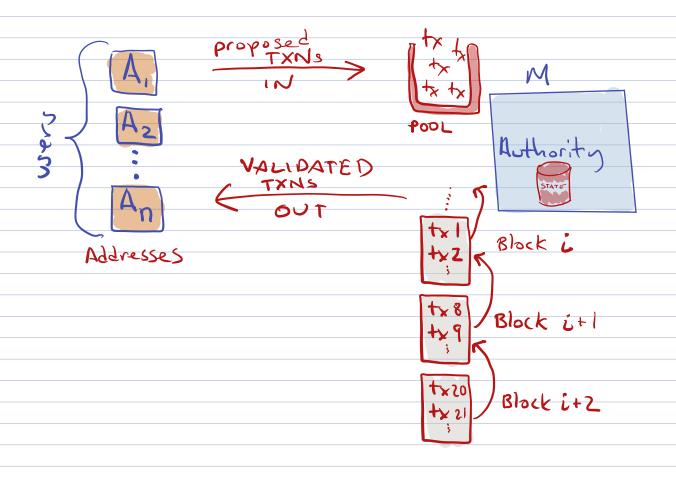
Before we stort — let's make sure we all understand a few terms.
Cryptographic Hash Functions
- One-way functions
- Input can be of any size - Output is a (small) fixed length, e.g. 256 bits or 2 possible values!
- Let x be the input to our hash function
- If h(·) is our hash function, then z=h(x)
3 is the resulting "message digest" (or "hash") x is called the "pre-image" of 3
IF we flipped a single bit of of then z changes unpredictably
Say you have a set of imputs X, , X2, m, Xn.
and let's say that all imputs are distinct (unique) but aren't very different.
$3 = h(x_1); 3 = h(x_2);; 3 = h(x_n)$
Each 3 is an integer chosen unitermally at random from O to 7256
The same is true if the X values (are distinct but) are very different.
Lastly, given a particular 3, it's computationally intersible to tind its pre-image
Two specitic cryptographic hash functions are RIPE-160 and SM-256


Consensus
- We often trade tangible items with the
rest of the world
cash, gold.
- Possession is equivalent to ownership
- Some tangible items require a bit more process
houses, cars, shares of a company
- We have many artifacts and mechanisms
to regulate the trading process
- Registries, titles, certificates
-Arbiters, markets/exchanges, judges
executives, authorities
- All in place to answer questions about Consensus
- who owns this? - How much money is in this account? - Is this transaction authorized?
Furthermore, availability of an answer matters.
-Visa is open 24/7

C123456789C #0123456789# 0100

It's easiest to correctly offer consensus Services using a single authorized Central authority.

But - single point of failure single point of attack Single point of trust


Blockchains

(Satashi Nakamoto, 2008)

The original paper is about Bitcoin.

- But the idea is more general.
- From now on, we'll use the term "Bitcoin" to refer to the software and protocol

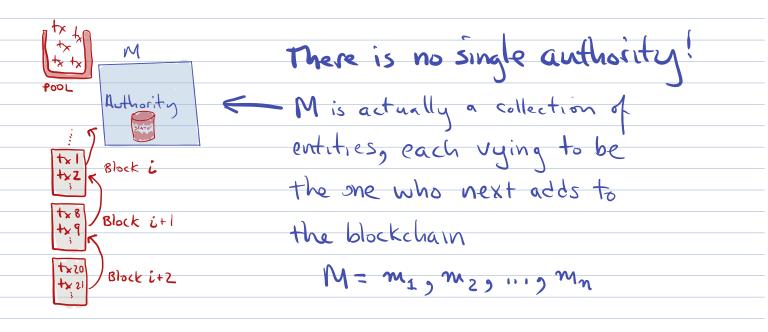
Nakamoto's blockchain is a secure distributed system that manages consensus about the state of a set of addresses (accounts) and authorized transactions among them,

Blockchains have a special data type	
called coin.	
- coin is a numeric amount	
- divisible into fractions	
- transferable just li	ke
- limited in quantity globally	
- cannot be counterteit mone	5
- requires special authority	
togenerate	
Blockchains also manage other data types but let's put that aside for now.)
but let's put that aside for now.	
-Blockchains manage consensus	
about how much coin is in	
accounts called addresses	

Addresses

Are created and controlled by users.

- Each is based on an elliptic curve crypto public/private key pair.
- Free to create, but controls no coin at first.
- Blockchains are typically open systems
 - Anyone can create accounts
 - -More importantly, anyone can mine
 - -Participation requires no authorization
- -Addresses are identified by the hash of the public key.
 - -BITCOIN Key pairs are based on ECDSA and addresses are the RIPEMD-160 hash of the public Key.
- A signature by the corresponding private key authorizes the transfer of coin to another address.


- A higher fee may garner higher priority,

Validation and Mining

Blockchains are most commonly based on a process called Proof-of-Work.

- Pow proposed by Cynthia Dwoek& Moni Noar (1993) to thwart Denial of Service attacks

-Adam Back proposed Hashcash as a proof of work based cryptocurrency (1997)

They are called miners because of the process used to elect which next adds a block:

Dlack miner constructs a candidate black with a set of transactions and the following header.

- Version

- h(prior block)

- Difficulty

- Merkle Root of all transactions

- Cime

- nonce

These values are concatenated and hashed

B=h(HEADER)

Bis a 256-bit value (BITCOIN actually hashes) twice

The block represents valid Proof of Work if

The mining creteria is met

h(HEADER)

t

IF not, select a new nonce or adjust the time (or the merkle root)

As we'll see, the difficulty is adjusted occasionally so that it takes on average T seconds to find a valid header given the target.

T=600 seconds in Bitcoin

Note that the miner includes a special fransaction that creates new coin in her own address - this coin base is a PoW reward.

- IF the mining criteria is met, the block is announced to all miners and users. The transactions that created the Merkle ROOT are part of the block.
 - If other miners confirm that
 - 1 h(header) & t
 - 2 each transaction is authorized
 - 3) each transaction is valid given prior block (1) All header values are volid*

Then they will add it to the blockchain after its prior.

*There are smaller details that we'll skip for now.

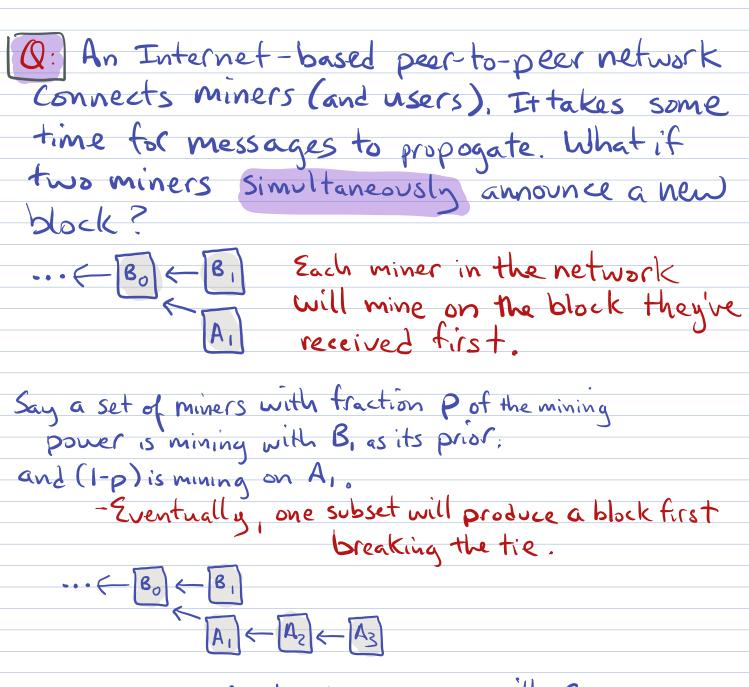
genesis
$$\begin{array}{c}
g_{\text{enesis}} \\
g_{\text{lock}} \\
g_{\text{o}}
\end{array}$$

$$\begin{array}{c}
+\chi_{1} \\
g_{\text{tx_{3}}} \\
+\chi_{4}
\end{array}$$

$$\begin{array}{c}
+\chi_{1} \\
g_{\text{tx_{3}}} \\
+\chi_{1}
\end{array}$$

$$\begin{array}{c}
+\chi_{10} \\
g_{\text{tx_{1}}} \\
+\chi_{12}
\end{array}$$

$$\begin{array}{c}
+\chi_{10} \\
g_{\text{tx_{1}}} \\
+\chi_{12}
\end{array}$$


Satoshi Defined

By adding the new block to their copy of the chain, O the miners then remove the transactions within from the pool of unconfirmed txs.

(2) Start mining a new candidate -new set of txns from the pool - new prior in header.

troot of work is probabilistic.

- There is no guarantee that more than one miner performed more than a single hash of one header.
- But for a sequence of n blocks, the probability grows quickly that number of hashes is close to expected

The probability of a tie increases as either

- The targeted mean interblock time decreases.

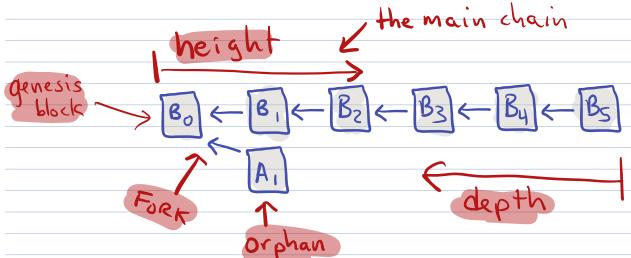
- The network propogation delay increases. (Why?)

Eg., Ethereum targets a delay of 15 seconds; Bitcoin 600 seconds.

Blackchain consensus

The state of the system is defined by the set of valid blocks, from the genesis block to the end; at each fork, we take the subtree with the most work completed.

- New blocks can come at any time! Against even the genesis block
- As now blocks are added, the work to write an alternate fork increases.
- Blockchains ensure availability of an answer, but achieve consensus only as blocks are added.


In fact, a variety of scenarios related to forks in the block chain are critical to understanding its performance and security

Fundamentally, one or more Miners with at least 1/2 the total mining power will win any tie.

And anyone can join as a miner (at least on open blockchains)

Even so, it's many, many, many orders of magnitude harder to break the crypto authorizing transactions.

Blockchain Vocabulary

We also might refer to the weight of a block or blocks, which refers to the amount of work performed.

You should memorize /understand all of these terms.

will be on the midtern exam.

Downsides to blockchains and cryptocurrency (and some responses)

- Proof of work is an inefficient use of energy for providing security for commerce / finance.

 True! "Proof of Stake" is an approach we'll investigate that uses low/no energy to do blockchain.
- Danks, and cash?

Nothing is wrong. Blockchains are q tascinating new approach that offers potentially lower fees. It also lowers I the buriters to commerce and timence, just as internet lowered burriers to into exchange.

3) Cryptocurrencies are used by only criminals.

-Not true. In general, Blockchains ofter auditable records of tinancial exchange. Not good for crime. It's a research challenge to provide a truly

But it will happen, and its important to recognize that

harms from this technology exist.

- A Cryptocorrencies are not supported by fiscal policies, and their values (exchange rates) are volitile and manipulated by molicions actors.
 - True! Well look a solutions trom finance later in the course.

In general, those against this approach feel it offers solutions to a problem where for most cares it is already solved — many of remaining cases are socially undesirable.